The pkgsrc guide

Documentation on the NetBSD packages
system

(2006/02/18)

Alistair Crooks
agc@NetBSD.org

Hubert Feyrer
hubertf@NetBSD.org

The pkgsrc Developers

The pkgsrc guide: Documentation on the NetBSD packages syst em
by Alistair Crooks, Hubert Feyrer, The pkgsrc Developers

Published 2006/02/18 01:46:43
Copyright © 1994-2005 The NetBSD Foundation, Inc

Information about using the NetBSD package system (pkdsan) both a user view for installing packages as well
as from a pkgsrc developers’ view for creating new packages.

Table of Contents

YT o= L RS o] (o T f o PSRBT 1
0 O 1 (o To [ox T ISP 1
R @ Y=Y 4T PSPPSR PTPPR 1.
IS TR =T 4T aTe] (oo 2SRRI 2
O B Y/ o ToTo | =1 o] 0|V PP RR 3

[. ThE PKOSIC USEI'S QUITE....cceiiieiiiei ittt ettt e ettt e e sttt e e e s bt e e e st e e e snneeesbneeeenans 1
2. Where to get pkgsrc and how to keep it Up-to-date..........ccccoooiiiiiiiiiie e 2

2.0 AS AN Il e 2
2.2. VI SUPL.... ettt 2
G T T W OV TSP UPR TP 2
2.4. Keeping pKgsrc up-to-date Via CVS.........cooiii e iee e e e 3.
3. Using pkgsrc on systems other than NetBSD.............ccccoviiiiiiiniiiieeeeeiiieeeeeeeenn 4
3.1. BOOtSIraPPING PKOSEC. ...ttt e ettt ettt e et e e e e e e e e b e beeeeeeeeaa 4
3.2. Platform-specific NOLES...........uiiiiiiiiee e 5.
3.2.1. DArwin (MAC OS X)....uuuiiiiiiiieeaaiiiiiiieeiieae e et e e e e e bt e e e e e e e e s nnnbeeeeeeas 5.
3.2.1.1. Using @ diSK IMAQGE.ceiiiiiiiiiiiiiiie e 5.
3.2.1.2. Using @ UFS Partition.........cc.uuueeiiiieeiieiieiiee e 5.
B.2. 2. FIEEBSD. ...ttt ne e 6
T T 1 1 (=) TP PUPUU TR PUOPRUTRN 6
3.2.3.1. When installing INterixX/SFUL..........cocoiiiiiiiiieee e 6
3.2.3.2. What to do if Interix/SFU is already installed.................c.occuveennnee 7.
3.2.3.3. Important notes for using PKGSIC........coovvvviiriieeeeie s 7
3.2.3.4. Limitations of the Interix platform...........ccccccoeveeeiiiiiie e, 8
3.2.3.5. Known issues for pKgSIrc 0N INTEIIX........uvrvieeeeiiiiiiiieiieeee e eciieeee 9
G T S 1 U 9
20 T N 1 SRR 10
3.2.6. OPENBSD.....cii it 10
32,7 SOIAMIS. ..ottt 11
3.2.7. 1. If yOU @re USING GCC.uiiieiieiiieiieireeeeeesssentieeeeeeeeesssneeeaeeeseannennnees 11
3.2.7.2. If you are using Sun WOrkShop.........cccoeeiiiiiiiiiiireees e cieeeeenns 11
3.2.7.3. Buildling 64-bit binaries with SUNPIO............ccccceeiiiiiiiiee 12
3.2.7.4. COMMON PrODIEMIS. . .uvvieeiee e ettt e e e e e e e e e e e e e nes 12
U] o o] (o 1= o SRS PPP 14
4.1. USiNg DINArY PACKAGES .. . eeeiieeeiie ittt e ettt e e e e et ee e e e e e e e 14.
4.1.1. Finding DiNary Packages.coooiiiiiiiiiieee e 14
4.1.2. Installing binary packages............cccoaiiiiiiiiiie e 14
4.1.3. A WO Of WAINING.eeeeiieiieee ettt e et ee e e bee e e e e 15
4.2. Building packages from SOUICE.ccoiii ittt 15
4.2.0. REQUITEMENTS ...eiiiiiieeiiiiiiie et ie ettt ee e sttt e e e e e e e e s e nbbbeeeeeaaaeeeannneeees 15.
4.2.2. Fetching diStfiles..........eeiiiiiiee ettt 15
4.2.3. How to build and install..............cooooiiiiii e 16
4.2.4. Selecting the COMPILEE..........eiiiii e 17
D CONTIGUIING PROSIC. ettt ettt e e e e e e e et e e e e e e eemneeea e e as 19
5.1. General CoONfIQUIAtION.eiiiiiiii et a e e 19.
5.2. Variables affecting the build proCess.........cooiaiiiiiii e 19

5.3. Developer/advanced SEttiNgS.........uuiiiii it 20

5.4. Selecting BUild OPtioNS.ueiiiiiaiii ittt 20.

6. Creating binary PACKAGES.coo i ea s 22
6.1. Building a single binary package..........cccuuuiiiiiiaiiiie e 22

6.2. Settings for creation of binary packages............ccouveeiiiii e 22

6.3. Doing a bulk build of all packages..........coooiiuiiiiiii e 22
6.3. 1. CONfIQUIALION....cciiiiiiiii e 22.
6.3.1.10UIld.CONT oo 22

6.3.1.2. /etC/MK.CONT....coii e 23
6.3.1.3pre-build.local oo 23

6.3.2. Other environmental coNSIderations.............ccceeeiiiiiiiiieiieeeenee e 24

5.3.3. OPEIALION. eeeeieiee ettt e e e e e e e e e e aeea s 24

6.3.4. WAt it dOBS.. ...t a e 24

6.3.5. DiSK SpPace reqUIrEMEILS........ccuuuieiiiiieee ettt e e e eeaae e s 25

6.3.6. Setting up a sandbox for chrooted builds..............ccccovveeeiniiieeees 25

6.3.7. Building a partial set of packages..........cooovvvviieiieie e 26

6.3.8. Uploading results of a bulk build................ccooiiiiiiiee e, 27

6.4. Creating a multiple CD-ROM packages collection............c.cceecvvvivieeeeeeiiiciieeenn, 28
6.4.1. Example of CAPaCK........cooiiiiiiiiii e 28

7. Frequently ASKEed QUESTIONScciuiiiiiiiiiiiie ittt e e nnes 30
7.1. Are there any mailing lists for pkg-related discus8ion...........cccccevveeeeiiviiviniennnn, 30.

7.2. Where's the pkgviews documentation?...........cccveeeiiiiiiiieieeeee s ceeeee e 30

7.3. Utilities for package management (PKGLOOIS)........uvvveeeeeiiiiiiiieieiie e ceeeeee s 30

7.4. HOW tO USE PKYSIC @S NON-TOOL.....ceieeeeeiiiiiiiieieeeee e s seiieeaeesesneteneeeeeee e s s e nnnneneees 31

7.5. How to resume transfers when fetching distfiles?...........cccccovvvee e, 32

7.6. How can | install/use XFree86 from pKgSIC2.........ccoviiiiiiiiiiieiiiiiie e 32

7.7. How can | install/use X.org from pKOSIC?2........covviiiiiiiieiiie e 32

7.8. How to fetch files from behind a firewall..............cooooiiiiiii e 32

7.9. How do | tellmake fetchto do passive FTR ... 33
7.10. How to fetch all distfiles at ONCE...........ueiiiiiiii e 33
7.11. What does “Don’t know how to make /usr/share/tmacditaradoc” mean?............. 34

7.12. What does “Could not find bsd.own.mK” mean2..............cccoceveeeeiiiniiiiiinceeeaes 34
7.13. USIiNg 'SUAO’ WIth PKOSEC.....coeiiieeiiee ettt 34
7.14. How do | change the location of configuration files2............ccccccoiiiiie 34
7.15. Automated SeCUrity ChECKS...........uuiiiiiiie e 35

[I. The pkgsrc develOper'S QUIAE..........oo.uuueeiiiieeei ettt e 36
8. Package components - files, directories and CONtENLS............c.eveeeeiiiiiiiiiiiiiie e 37
BLL.MAKETIIE 1eueiiieii ettt aaeaaaaa 37

S T2 1111) TR TSPPP PP 39

8.3 PALCNES/E ... e a e e e e 40

8.4. Other mandatory fillE@S........cooi i 40.

8.5. OPLONAI FIlES....cie ittt 41

e T TR o o Y 41
TR 0 1= SO 41

9. Programming iMaKefile S......uuiiiiiiiiiiioiiii et 42
9.1.Makefile Variables..........oooiiiiiii 42
9.1.1. NamMIiNg CONVENTIONS .. .uvvriieeeeesiiittiieeeeeeeesssestnaeeesesssnrreereeeeessesnnnnnnneeeees 43

LS I 0o o [o1 o] o 1= 1= PP PURP 43

9.2.1. Adding thingS to @ lISL........ceeiiiiiiiiiiie e A3

9.2.2. Converting an internal list into an external list.............ccccccceiiiiiiiiiiennn. 43.

9.2.3. Passing variables to a shell command............ccccccooiiiiiiiiiii e 44

9.2.4. QUOLING QUIAEIINE ...t 44

9.2.5. Workaround for a bug in BSD Make...........coooiiiiiiiiiiiiiieeee e 45

L0, PLIST ISSUBS et e ettt e ettt ettt e e e e e s ek bbb ettt e e e e e e e s e s nbba e et e e e e eaareeeaeeeeaannnne 46
O S | B PSP TURP R UPRTTP 46
10.2. Semi-automatiBLIST gENEIAtiON........ccuieiaiiiiiiiiiieiie e et ie e ee e ee e e e 46
10.3. Tweaking output ahake print-PLIST ... 46
10.4. Variable substitution in PLIST.........oooi e 46
10.5. Man Page COMPIESSION.uuuiiiiieaaaiiaititieeeee e e e e e e ameeeee s e e s bsbbeeeeaaeesaasnnnneeeeeaeesd Al
10.6. Changing PLIST source WIBLIST_SRC........ccouuiiiiiriiireieeeaneeniieiieeeeeeeeeeeeeeeen A7

10.7. Platform-specific and differing PLISTS.......cccuviiiiiieaiiieieee e 48
10.8. Sharing directories between packages.........ccccevvveeiiiiieeiie e 48

11. Buildlink MethodolOgy..........ccovieiieiiiiiee e 50
11.1. Converting packages to use buildlink3.............cccovverieiiee e 50
11.2. Writingbuildlink3.mk 1= PSRRI 51
11.2.1. Anatomy of a buildlink3.mK file..........ccccvriiiiiie e 51

11.2.2. Updatin@UILDLINK_DEPENDS.pkg in buildlink3.mk fileS...oooeeeennn. 53

11.3. Writingbuiltin.mk — filES .. e e 53
11.3.1. Anatomy of &uiltinmk — fil€......ceeeeeriiii e 54

11.3.2. Global preferences for native or pkgsrc software.........cccccceeevvvvveeneeennn. 55

12. The pkginstall frameWOrK............cooiiiiiiii e 56
12.1. Files and directories outside the installation prefix...........cccceevviveiieee v, 56
12.1.1. Directory manipulation............cuuveieeeeeriiiiiieieee e e e e eee e e 56

12.1.2. File Manipulation...........ccuuiiiiieie e eerer e e e e e s eee e e e e s ennnes 57

12.2. Configuration fil@S..........ooiuiiiiiiiii s 57
12.2.1. HOWPKG_SYSCONFDIRS SEL.....ccceeiiiiiiiiieeieeeeee e, 57

12.2.2. Telling the software where configuration files.are..............cccccien. 58

12.2.3. Patching installations..............oeuiiiiiiie e 58

12.2.4. Disabling handling of configuration files............ccoooiiiiee, 59

12.3. SYStEM StArTUP SCHPLS. ..eeeiiieeee ittt e e e et e e e e e e st eeeaaaeaeeannns 59.
12.3.1. Disabling handling of system startup SCrpLS..........cccvveeieieeiinniiiiiieeee 59

12.4. SyStEM USEIS QN0 GIOUPS .. .uuueeeeieeeaeaaiiatttieeeeaeeasaasmraeeas s e annsbeseeeaaeaeaaaannneeseeas 6Q
12.5. SYSIEM ShEIIS ...t 60
12.5.1. Disabling shell regisStration..............cccooe it 60

12,8, FONTS. ..ttt ettt ettt ettt ettt bbbt bbb bbb e nnnnne et s aeeeteenrene 60
12.6.1. Disabling automatic update of the fonts databases..............cccccccernne 61

13. OPtioNS NANAING. ..ottt e eeereee e e e 62
13.1. Global default OPtIONS.........ooi i) 62.
13.2. Converting packages to USs.optionsS. MK ...uuiiiiiiiiri it 62
13.3. OPLON NABMES.eiiiiiiiiie ettt e et e e st e e e s e e enenneeas 64

14, The DUIIA PrOCESS. .. .eie ittt ettt e st e e s s eennnne e e nnneed 65
I 50 I 1 1 o To [X 1o] o KO PP 65
14.2. Program [OCALION.ocuuuiieeiiiiie et e et e st e e s e e e e s seeeeenand 65
14.3. Directories used during the build proCess..........ccccceveeeiiiiiiiiiieiee e 66
14.4. RUNNING @ PRESE......eiiiiiiiiiie ettt e e e sree e 67

14.5. ThefetChPRASE. . ..o 67

14.6. TheCheCKSUNDNASE......coi i 67.
14.7. ThEEXITACIPNASE. ...ttt et e e e e ee e e e e e ennnd 67
14.8. ThEPAICHPNASE. ...ttt e e e snneeeed 68
14.9. ThEOOISPRASE. ... 68
14.10. TheNraPPEIPRASE.cc ettt e e e e e neeeeeas 68.
I R g = oo [0 [(= o] g F=] = USRI 68.
14.12. ThEDUIIA PRESE...cciiieeieee e e 69
14.13. ThEESIPNASE. ...t e e e e e e e e eeaes) 69
14.14. ThENSEAI PRASE.......eiiiiiiee e 69
14.15. ThePaCKagEINASE......eeeeeiieii et e e e 71
14.16. Other helpful targeLsS........ccooi e d L
15. Tools needed for building or runNNINg..........c...oeeiiiiii e B
15.1. TOOIS fOr PKGSIC DUIIAS. ...ttt 76.
15.2. Tools needed by PACKAgES.........uuviiiiieeeei e e e e 76
15.3. Tools provided by platforms.............oevvvieeeiiiiciiiieiec e eeeene e ee e o)
16. Making YOour PACKAGE WOTK...........coiiiiiiiiei ettt 78
16.1. General OPEratiQN.........coii ittt 78
16.1.1. How to pull in variables from /etc/mk.canf............ccoooeeeiii i 78
16.1.2. Where to install documentation...............cooveiiiiiiiie e 78
16.1.3. ReStricted PACKAGES.......ccuuveriiieie e e e it ee e e e s e e e e e e e e e e e 8
16.1.4. Handling dependenCIES...........uuuriiieeeer et e e e s eeneee e e e e e e eaeeeee s 79
16.1.5. Handling conflicts with other packages...........ccccooeieeeiiiiiiiieiie e, 81
16.1.6. Packages that cannot or should not be built...........cccceeeeeiiiiiiiiiinneee e 81
16.1.7. Packages which should not be deleted, once irtalle.............cccceeeeeee. 81
16.1.8. Handling packages with security problems...........cccccceeeiiiniiiiiieneeee e 82
16.1.9. How to handle compiler Bugs..........ocovieiiiiiiiii e 82
16.1.10. How to handle incrementing versions when fixingxastieg package.....82
16.1.11. Portability of pACKAGES.cuuiiiiiiiiiiiiiiiee e 82
16.1.11.1. ${INSTALL}, ${INSTALL_DATA_DIR}, ... cceeeeieiiiieeiiie e 83

16.2. Possible downloading iSSUBSccciiaiiiiiiiiii i 83
16.2.1. Packages whose distfiles aren’t available for glaimnloading.................. 83
16.2.2. How to handle modified distfiles with the 'old’ name...............c.ccccco.... 83
16.3. Configuration GOICNAS........cciiiiii e 83.
16.3.1. Shared libraries - btQQL............oooiiiiiiii e 84
16.3.2. Using libtool on GNU packages that already supfimdal........................ 85
16.3.3. GNU Autoconf/AUtOMAKE. ... 85
16.4. Building the package............ooeiiiiiiiii e 86.
16.4.1. CPP defiN@S...cci it 86
16.4.1.1. CPP defines for operating SyStemS...........cooveeeiiiiiiiiiiiieiieeeeeeed 86

16.4.1.2. CPP defines for CPUS.........cooiiiiiiiiie e 87

16.4.1.3. CPP defines for compilerS........cooooiiiiiiiiiiiiiiie e, 87

16.4.2. Examples of CPP defines for some platforms.............ccccoocieiiinenenne 87.
16.4.3. Getting a list of CPP defines.........ccvvviiivieiiii e 38
16.5. Package SPeCiIfiC @CHIOMS........cuuvieiiieiee i e e e e 38
16.5.1. USEr iNTEraCHQN.ceiiiiiiiiieiiiiie et e e 88
16.5.2. HANAlING lICENSES.....c.ci ittt e e e e e 88
16.5.3. Installing SCOre fil@S.......uuiiiiieiee e 89

Vi

16.5.4. Packages containing perl SCHPLS..........uuiiiiiiiiiiiieeee e 20

16.5.5. Packages with hardcoded paths to other interpreter..............cccccceoeee 20

16.5.6. Packages installing perl modules............ccoooiiiiiiiiiiiiiieeeee 90

16.5.7. Packages installing info files.............ueeei 20

16.5.8. Packages installing Mman Pages........cuueeeiiieaaanniiiiiiieiee e a1

16.5.9. Packages installing GConf2 data files.............cccceeeeeiiiiiiiiie 91

16.5.10. Packages installing scrollkeeper data.files...........cccccceiiiiiiiiiiinnnd 92

16.5.11. Packages installing X11 fONtS........ccooaiiiiiiiiiiiiiiiee e 92

16.5.12. Packages installing GTK2 modules............oooooiiiiiiiiiiiiiiiiiiieeeeees 92

16.5.13. Packages installing SGML or XML data.........cccceerriiiiiiiiiiiniienniiiieees, 93

16.5.14. Packages installing extensions to the MIME daba........................... 93

16.5.15. Packages using intltQQl...........ccuueeiiiiiiiiii e a3

16.5.16. Packages installing startup SCriptS........ccvuveiiiiiiiiiii e 94

16.5.17. Packages installing TeX modules.............oooiiiiiiiieiiniiiiieeee e 94

16.6. Feedback to the QUthOr..........coo i 94.

I = o T o o 1 o PSPPI 95

18. Submitting and COMMILEING.......ceeiiiiiiie e e 97

18.1. SUbMILING YOUr PACKAJES.......c.eeiiiieiieee ettt e e 97

18.2. General notes when adding, updating, or removingamEK..........ccccceeeevevvivvnnnnn. 97

18.3. Committing: Importing a package into CVS.........cooociiiiieieeeee e 97

18.4. Updating a package t0 @ NEWET VEISION...........uuviieeeeeiiiiiiiieeieeeeessenneneeeeeanennnes a8

18.5. Moving @ package iN PKOSIC......cuuuieiieeiee e eeseiieieeeee e e e e s sinnne e e e e s s snnnaeenreeaeeeenanes 98

1. POIING PROSIC . .eeeieeiitie ittt ettt e e bbb e e e et bb e e e e snbb e e e nnee e snbbeeeeans 100
19.1. Porting pkgsrc to a new operating SYStEM..........covuviieiiiieieriiiiie et 100

19.2. Adding support for a New COMPILEL..........coiiiiiiiiiiiiee e 100

A. A simple example package: DISON............uiiiiiiiiii e 102
AL IS et 102
AL L MAKETI ...ceiiee e 102

ALL2. DESCR ...ttt bbb e e et 102

N G T = I 1S IO U PO VPP PUPTOURTRRPPRTOPI 102

A.1.4. Checking a package WIKglint ..o 103

A.2. Steps for building, installing, packaging...........c.oooiiiee e 103

(S =11 (o [N (oo TR 106
B.1. BUIIAING fIGIEL ...ttt e e e eme e e e e 106

B.2. Packaging fIgIet. ... 107

C. Layout of the FTP server’'s package archive...............ccccoiiiiiiiii i 109
D. Editing guidelines for the pKgSIC QUIAE............ceviiiiiiie et 111
[20 T 1= £ 1] £ TR 111

D 2 o (0Tt =T L1] =PRI 111

Vii

Chapter 1.
What is pkgsrc?

1.1. Introduction

There is a lot of software freely available for Unix-basesdtsyns, which usually runs on NetBSD and
other Unix-flavoured systems, too, sometimes with some fitations. The NetBSD Packages
Collection (pkgsrc) incorporates any such changes negessmake that software run, and makes the
installation (and de-installation) of the software paakagsy by means of a single command.

Once the software has been built, it is manipulated withptkge * tools so that installation and
de-installation, printing of an inventory of all installpdckages and retrieval of one-line comments or
more verbose descriptions are all simple.

pkgsrc currently contains several thousand packagesidimg:

- www/apache - The Apache web server

« www/mozilla - The Mozilla web browser

« meta-pkgs/gnome - The GNOME Desktop Environment
« meta-pkgs/kde3 - The K Desktop Environment

...just to name a few.

pkgsrc has built-in support for handling varying dependesicsuch as pthreads and X11, and extended
features such as IPv6 support on a range of platforms.

pkgsrc was derived from FreeBSD's ports system, and ihjittsdveloped for NetBSD only. Since then,
pkgsrc has grown a lot, and now supports the following ptatfa

« Darwin (http://developer.apple.com/darwin/) (Mac OS Xgh/www.apple.com/macosx/))
- DragonFly BSD (http://www.DragonFlyBSD.org/)

« FreeBSD (http://www.FreeBSD.org/)

« Microsoft Windows, via Interix (http://www.microsoft.c@windows/sfu/)

« IRIX (http://www.sgi.com/software/irix6.5/)

« Linux (http://www.linux.org/)

« NetBSD (http://www.NetBSD.org/) (of course)

« Tru64 (http://h30097.www3.hp.com/) (Digital UNIX, OSF1)

« OpenBSD (http://www.openbsd.org/)

« Solaris (http://www.sun.com/solaris/)

Chapter 1. What is pkgsrc?

1.2. Overview

This document is divided into two parts. The firBhe pkgsrc user’s guidelescribes how one can use
one of the packages in the Package Collection, either baliimgt a precompiled binary package, or by
building one’s own copy using the NetBSD package system.sécend part,

The pkgsrc developer’s guidexplains how to prepare a package so it can be easily budthmsr
NetBSD users without knowing about the package’s buildietgids.

This document is available in various formats:

« HTML (index.html)
- PDF (pkgsrc.pdf)
« PS (pkgsrc.ps)

« TXT (pkgsrc.txt)

1.3. Terminology

There has been a lot of talk about “ports”, “packages”, eidas Here is a description of all the
terminology used within this document.

Package

A set of files and building instructions that describe whagsessary to build a certain piece of
software using pkgsrc. Packages are traditionally stonel@tiusr/pkgsrc

The NetBSD package system

This is the former name of “pkgsrc”. It is part of the NetBSDeogiting system and can be
bootstrapped to run on non-NetBSD operating systems asliedindles building (compiling),
installing, and removing of packages.

Distfile

This term describes the file or files that are provided by thbaof the piece of software to
distribute his work. All the changes necessary to build otBS® are reflected in the
corresponding package. Usually the distfile is in the forra obmpressed tar-archive, but other
types are possible, too. Distfiles are usually stored bélewpkgsrc/distfiles

Port
This is the term used by FreeBSD and OpenBSD people for whatla package. In NetBSD
terminology, “port” refers to a different architecture.

Precompiled/binary package

A set of binaries built with pkgsrc from a distfile and stuftedether in a singlegz file so it can

be installed on machines of the same machine architecttineutithe need to recompile. Packages
are usually generated insr/pkgsrc/packages ; there is also an archive on ftp.NetBSD.org
(ftp://ftp.NetBSD.org/pub/NetBSD/packages/).

Chapter 1. What is pkgsrc?

Sometimes, this is referred to by the term “package” tooeeigily in the context of precompiled
packages.
Program

The piece of software to be installed which will be consteddrom all the files in the distfile by the
actions defined in the corresponding package.

1.4. Typography

When giving examples for commands, shell prompts are ussldae if the command should/can be
issued as root, or if “normal” user privileges are sufficiéfie use & for root’s shell prompt, and &for
users’ shell prompt, assuming they use the C-shell or tcsh.

|. The pkgsrc user’s guide

Chapter 2.
Where to get pkgsrc and how to
keep It up-to-date

There are three ways to get pkgsrc. Either as a tar file, vig 8tika CVS. All three ways are described
here.

2.1. As tar file

To get pkgsrc going, you need to get the pkgsrc.tar.gz file fitp.NetBSD.org
(ftp://ftp.NetBSD.org/pub/NetBSD/NetBSD-current/téites/pkgsrc.tar.gz) and unpack it into
Jusr/pkgsrc

2.2. Via SUP

As an alternative to the tar file, you can get pkgsrc via thév&e Update Protocol, SUP. To do so,
make sure your supfile has a line

release=pkgsrc

in it, see the examples iasr/share/examples/supfiles , and that théusr/pkgsrc directory
exists. Then, simply rusup -v/ pat h/ t o/ your/ supfil e.

2.3. Via CVS

To get pkgsrc via CVS, make sure you have “cvs” installed. dau initial (full) checkout of pkgsrc, do
the following steps:

% set env CVSROOT anoncvs@noncvs. Net BSD. or g: / cvsr oot
% setenv CVS_RSH ssh

% cd /usr

% cvs checkout -P pkgsrc

This will create thepkgsrc directory in your/usr , and all the package source will be stored under
lusr/pkgsrc . To update pkgsrc after the initial checkout, make sure yaMefiVS_RSHset as above,
then do:

% cd /usr/pkgsrc
% cvs -q update -dP

Chapter 2. Where to get pkgsrc and how to keep it up-to-date

Please also note that it is possible to have multiple cogdidsegpkgsrc hierarchy in use at any one time -
all work is done relatively within the pkgsrc tree.

2.4. Keeping pkgsrc up-to-date via CVS
If your copy of pkgsrc contains a lot @fvSdirectories, you can update it using the cvs(1) progranstFir

cd to the top level directory of pkgsrc. Then raws -q update -dR and you're done.

If that doesn’t work and the filE€VS/Root contains the string “:pserver:”, you have to rews loginonce
to get known to the NetBSD CVS server. Tews utility will then ask you for a password. Just enter

“anoncvs”. Then try again to update.

Chapter 3.
Using pkgsrc on systems other
than NetBSD

3.1. Bootstrapping pkgsrc

For operating systems other than NetBSD, we provide a lraptgit to build the required tools to use
pkgsrc on your platform. Besides support for native NetBgikgsrc and the bootstrap kit have support
for the following operating systems:

- Darwin (Mac OS X)

- DragonFly BSD

+ FreeBSD

« Interix (Windows 2000, XP, 2003)

+ IRIX

« Linux

« OpenBSD

- Solaris

. Tru64 (Digital UNIX/OSF1)

Support for other platforms is under development.

Installing the bootstrap kit should be as simple as:

env CVS_RSH=ssh cvs -d anoncvs@noncvs. Net BSD. org: / cvsroot checkout pkgsrc
cd pkgsrc/ bootstrap
./bootstrap

SeeChapter Zor other ways to get pkgsrc before bootstrapping. The ghaatstrap command will use
the defaults ofusr/pkg for the prefixwhere programs will be installed in, angr/db/pkg for the
package database directory where pkgsrc will do its intdrmakkeeping. However, these can also be set
using command-line arguments.

Binary packages for the pkgsrc tools and an initial set okpges is available for supported platforms.
An up-to-date list of these can be found on www.pkgsrc.otip(fwww.pkgsrc.org/). Note that this only
works for privileged builds that install intisr/pkg

Note: The bootstrap installs a bmake tool. Use this bmake when building via pkgsrc. For examples
in this guide, use bmake instead of “make”.

Chapter 3. Using pkgsrc on systems other than NetBSD

3.2. Platform-specific notes

Here are some platform-specific notes you should be aware of.

3.2.1. Darwin (Mac OS X)

Darwin 5.x and 6.x are supported. There are two methods nfjysigsrc on Mac OS X, by using a
disk image or aUFS partition

Before you start, you will need to download and install thecNIxS X Developer Tools from Apple’s
Developer Connection. See http://developer.apple.caodsx/ for details. Also, make sure you install
X11 for Mac OS X and the X11 SDK from http://www.apple.combuax/x11/download/ if you intend
to build packages that use the X11 Window System.

If you already have a UFS patrtition, or have a spare partthahyou can format as UFS, it is
recommended to use that instead of the disk image. It'll Imeesehat faster and will mount
automatically at boot time, where you must manually mourisk iinage.

Note: You cannot use a HFS+ file system for pkgsrc, because pkgsrc currently requires the file
system to be case-sensitive, and HFS+ is not.

3.2.1.1. Using a disk image

Create the disk image:

cd pkgsrc/bootstrap

./ ufsdiskimge create ~/Docunments/NetBSD 512 # megabytes - season to taste
./ uf sdi ski mage nmount ~/ Docunents/ Net BSD

sudo chown ‘id -u':“id -g° /Vol umes/ Net BSD

That's it!

3.2.1.2. Using a UFS partition

By default,/usr will be on your root file system, normally HFS+. It is possibbeuse the defauftrefix
of /usr/pkg by symlinking/usr/pkg to a directory on a UFS file system. Obviously, another syknlin
is required if you want to place the package database dieotdside theprefix e.g.

./bootstrap --pkgdbdir /usr/pkg/pkgdb

If you created your partitions at the time of installing Ma& & and formatted the target partition as
UFS, it should automatically mount @violumes/<volume name> when the machine boots. If you are
(re)formatting a partition as UFS, you need to ensure thepértition map correctly reflects
“Apple_UFS” and not “Apple_HFS".

Chapter 3. Using pkgsrc on systems other than NetBSD

The problem is that none of the disk tools will let you touchskdhat is booted from. You can unmount
the partition, but even if you newfs it, the partition typdlwie incorrect and the automounter won't
mount it. It can be mounted manually, but it won’t appear indeir.

You'll need to boot off of the OS X Installation (User) CD. Whthe Installation program starts, go up
to the menu and select Disk Utility. Now, you will be able tées the partition you want to be UFS, and
Format it Apple UFS. Quit the Disk Utility, quit the instatleshich will reboot your machine. The new
UFS file system will appear in Finder.

Be aware that the permissions on the new file system will b&atle by root only.

This note is as of 10.2 (Jaguar) and applies to earlier vessidopefully Apple will fix Disk Utility in
10.3 (Panther).

3.2.2. FreeBSD

FreeBSD 4.7 and 5.0 have been tested and are supportedyeibi@ns may work.

Care should be taken so that the tools that this kit installsat conflict with the FreeBSD userland
tools. There are several steps:

1. FreeBSD stores its ports pkg databaswandb/pkg . It is therefore recommended that you
choose a different location (e gsr/pkgdb) by using the --pkgdbdir option to the bootstrap script.

2. If you do not intend to use the FreeBSD ports tools, it'soatiy a good idea to move them out of
the way to avoid confusion, e.g.

cd /usr/sbin
nmv pkg_add pkg_add.orig
nmv pkg_create pkg_create.orig
nmv pkg_del ete pkg_delete.orig
mv pkg_info pkg_info.orig
3. An exampldetc/mk.conf file will be placed in/etc/mk.conf.example file when you use the

bootstrap script.

3.2.3. Interix

Interix is a POSIX-compatible subsystem for the Windows Nfriel, providing a Unix-like
environment with a tighter kernel integration than avdaahith Cygwin. It is part of the Windows
Services for Unix package, available for free for any li@hsopy of Windows 2000, XP (not including
XP Home), or 2003. SFU can be downloaded from http://www.osoft.com/windows/sfu/.

Services for Unix 3.5, current as of this writing, has beesteteé. 3.0 or 3.1 may work, but are not
officially supported. (The main difference in 3.0/3.1 iskax pthreads.)

3.2.3.1. When installing Interix/SFU

At an absolute minimum, the following packages must be ilestdrom the Windows Services for Unix
3.5 distribution in order to use pkgsrc:

Chapter 3. Using pkgsrc on systems other than NetBSD

- Ultilities -> Base Utilities

« Interix GNU Components -> (all)
« Remote Connectivity

+ Interix SDK

When using pkgsrc on Interix, DO NOT install the Utilitiesomomponent "UNIX Perl". That is Perl 5.6
without shared module support, installed to /usr/locat @&iil only cause confusion. Instead, install Perl
5.8 from pkgsrc (or from a binary package).

The Remote Connectivity subcomponent "Windows Remotel SleeVice” does not need to be installed,
but Remote Connectivity itself should be installed in ordelnave a working inetd.

During installation you may be asked whether to enable détehavior for Interix programs, and
whether to make pathnames default to case-sensitive dS#tauld be enabled, and case-sensitivity
MUST be enabled. (Without case-sensitivity, a large nunab@ackages including perl will not build.)

NOTE: Newer Windows service packs change the way binarywgi@cworks (via the Data Execution
Prevention feature). In order to use pkgsrc and other gogpded binaries reliably, a hotfix containing
POSIX.EXE, PSXDLL.DLL, PSXRUN.EXE, and PSXSS.EXE (8995##Ziewer) must be installed.
Hotfixes are available from Microsoft through a support cactt however, a NetBSD developer has
made most Interix hotfixes available for personal use framMivww.duh.org/interix/hotfixes.php.

3.2.3.2. What to do if Interix/SFU is already installed

If SFU is already installed and you wish to alter these sgétito work with pkgsrc, note the following
things.

- To uninstall UNIX Perl, use Add/Remove Programs, selectrbioft Windows Services for UNIX,
then click Change. In the installer, choose Add or Remowan tmcheck Utilities->UNIX Perl.

- To enable case-sensitivity for the file system, run REGEBEXE, and change the following registry
key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Contidession Manager\kernel
Set the DWORD value "obcaseinsensitive" to 0; then reboot.

- To enable setuid binaries (optional), run REGEDIT.EXE, ehdnge the following registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Services for UX
Set the DWORD value "EnableSetuidBinaries” to 1; then réboo

3.2.3.3. Important notes for using pkgsrc

The package manager (either the pkgsrc "su" user, or thewseing "pkg_add") must be a member of
the local Administrators group. Such a user must also be teseth the bootstrap. This is slightly
relaxed from the normal pkgsrc requirement of "root".

The package manager should use a umask of 002. "make ingilhiutomatically complain if this is
not the case. This ensures that directories written indis#pkg are Administrators-group writeable.

Chapter 3. Using pkgsrc on systems other than NetBSD

The popular Interix binary packages from http://www.iojgesystems.com/ use an older version of
pkgsrc’s pkg_*tools. Ideally, these should NOT be used imwoction with pkgsrc. If you choose to use
them at the same time as the pkgsrc packages, ensure thage/thueuproper pkg_* tools for each type of
binary package.

The TERM setting used for DOS-type console windows (inalgdhose invoked by the csh and ksh
startup shortcuts) is "interix". Most systems don’t haveraicap/terminfo entry for it, but the following
.termcap entry provides adequate emulation in most cases:

interix:kP=\E[S:kN=\E[T:kH=\E[U:dc@:DC@:tc=pcansi:

3.2.3.4. Limitations of the Interix platform

Though Interix suffices as a familiar and flexible substifotea full Unix-like platform, it has some
drawbacks that should be noted for those desiring to makentise of Interix.

- X11:

Interix comes with the standard set of X11R6 client librgyind can run X11 based applications, but
it doesnotcome with an X server. Some options are StarNet X-Win32
(http://www.starnet.com/products/xwin32/), HummingbiExceed
(http://connectivity.hummingbird.com/products/naterd/) (available in a trimmed version for Interix
from Interop Systems as the Interop X Server (http://wwigropsystems.com/InteropXserver.htm)),
and the free X11 server included with Cygwin (http://x.cygwom/).

Also, StarNet Communications has graciously provided @ Wersion of their X-Win32 product that
accepts connections only from localhost: X-Win32 LX
(http://www.starnet.com/xwin32LX/get_xwin32LX.htmmgcommended by the maintainer of Interix
pkgsrc support.

. X11 acceleration:

Because Interix runs in a completely different NT subsydtemm Win32 applications, it does not
currently support various X11 protocol extensions for &egion (such as MIT-SHM or DGA). Most
interactive applications to a local X server will run reaably fast, but full motion video and other
graphics intensive applications may require a faster-thgrected CPU.

« Audio:

Interix has no native support for audio output. For audigmsup pkgsrc uses thesoundclient/server
audio system on Interix. Unlike on most platforms, #huelio/esound package doesot contain the
esdserver component. To output audio via an Interix hostgthelators/cygwin_esound package
must also be installed.

« CD/DVDs, USB, and SCSI:

Direct device access is not currently supported in Intesdxt is not currently possible to access
CD/DVD drives, USB devices, or SCSI devices through norsyi¢em means. Among other things,
this makes it impossible to use Interix directly for CD/DVDrhing.

- Tape drives:

Chapter 3. Using pkgsrc on systems other than NetBSD

Due to the same limitations as for CD-ROMs and SCSI devieg® tlrives are also not directly
accessible in Interix. However, support is in work to makgetdrive access possible by using Cygwin
as a bridge (similarly to audio bridged via Cygwin’s esouenvsr).

3.2.3.5. Known issues for pkgsrc on Interix

It is not necessary, in general, to have a "root" user on thedd's system; any member of the local
Administrators group will suffice. However, some packagasantly assume that the user named "root"
is the privileged user. To accommodate these, you may cseatea user; make sure it is in the local
group Administrators (or your language equivalent).

"pkg_add" creates directories of mode 0755, not 0775, inGPBBDIR. For the time being, install
packages as the local Administrator (or your language @dgriv), or run the following command after
installing a package to work around the issue:

chnod -R g+w $PKG DBDI R

3.2.4. IRIX

You will need a working C compiler, either gcc or SGI's MIPSHaviIPSpro compiler (cc/c89). Please
set theCCenvironment variable according to your preference. If youndt have a license for the
MIPSpro compiler suite, you can download a gcc tardist fiverfhttp://freeware.sgi.com/.

Please note that you will need IRIX 6.5.17 or higher, as thibé earliest version of IRIX providing
support for if_indextoname(3), if_nametoindex(3), etc.

At this point in time, pkgsrc only supports one ABI at a tim&af is, you can not switch between the old
32-bit ABI, the new 32-bit ABI and the 64-bit ABI. If you staout using "abi=n32", that's what all your
packages will be built with.

Therefore, please make sure that you have no confli@fg\GSin your environment or the
letc/mk.conf . Particularly, make sure that you do not try to link n32 objées with lib64 or vice
versa. Check youetc/compiler.defaults !

If you have the actual pkgsrc tree mounted via NFS from a diffehost, please make sure to set
WRKOBJDIRO a local directory, as it appears that IRIX linker occaalbnruns into issues when trying
to link over a network-mounted file system.

The bootstrapping process should set all the right optionpriograms such as imake(1), but you may
want to set some options depending on your local setup. €spkgsrc/mk/defaults/mk.conf
and, of course, your compiler's man pages for details.

If you are using SGI's MIPSPro compiler, please set

PKGSRC_COMPILER= mipspro

in /etc/mk.conf . Otherwise, pkgsrc will assume you are using gcc and may prassing invalid
flags to the compiler. Note that bootstrap should create progpiatemk.conf.example by default.

If you have both the MIPSPro compiler chain installed as waslfjcc, but want to make sure that
MIPRPro is used, please set yATHto notinclude the location of gcc (oftelasr/freeware/bin),
and (important) pass the '--preserve-path’ flag.

Chapter 3. Using pkgsrc on systems other than NetBSD

3.2.5. Linux

Some versions of Linux (for example Debian GNU/Linux) neides libtermcap or libcurses
(libncurses). Installing the distributions libncursestghackage (or equivalent) should fix the problem.

pkgsrc supports both gcc (GNU Compiler Collection) and lotg| C++ Compiler). gcc is the default.
icc 8.0 and 8.1 on i386 have been tested.

To bootstrap using icc, assuming the default icc instaliatlirectory:

env CC=/opt/intel_cc_80/bin/icc LDFLAGS=-static-libcx a\
ac_cv___attribute__=yes ./bootstrap

Note: icc 8.1 needs the ‘“-i-static’ argument instead of -static-libcxa.

icc supports __attribute__, but the GNU configure test usessted function, which icc does not
support. #undef’'ing __attribute__ has the unfortunate-siffiect of breaking many of the Linux header
files, which cannot be compiled properly without __attréout. The test must be overridden so that
__attribute__is assumed supported by the compiler.

After bootstrapping, you should seKkGSRC_COMPILER /etc/mk.conf
PKGSRC_COMPILER= icc

The default installation directory for icc ispt/intel_cc_80 , which is also the pkgsrc default. If you
have installed it into a different directory, 9€ICBASEIn /etc/mk.conf

ICCBASE= lopt/icc

pkgsrc uses the static linking method of the runtime limmprovided by icc, so binaries can be run on
other systems which do not have the shared libraries iestall

Libtool, however, extracts a list of libraries from the 1i¢bmmand run when linking a C++ shared
library and records it, throwing away the -Bstatic and -Balyric options interspersed between the
libraries. This means that libtool-linked C++ shared lifga will have a runtime dependency on the icc
libraries until this is fixed in libtool.

3.2.6. OpenBSD
OpenBSD 3.0 and 3.2 are tested and supported.

Care should be taken so that the tools that this kit installsat conflict with the OpenBSD userland
tools. There are several steps:

1. OpenBSD stores its ports pkg databaswandb/pkg . It is therefore recommended that you
choose a different location (e fgsr/pkgdb) by using the --pkgdbdir option to the bootstrap script.

2. If you do not intend to use the OpenBSD ports tools, it'djatdy a good idea to move them out of
the way to avoid confusion, e.g.

cd /usr/sbin
nv pkg_add pkg_add.orig

10

Chapter 3. Using pkgsrc on systems other than NetBSD

nmv pkg_create pkg_create.orig
nv pkg_del ete pkg_delete.orig
mv pkg_info pkg_info.orig

3. An exampldetc/mk.conf file will be placed in/etc/mk.conf.example file when you use the
bootstrap script. OpenBSD’s make program us&smk.conf as well. You can work around this
by enclosing all the pkgsrc-specific parts of the file with:

.ifdef BSD_PKG_MK

pkgsrc stuff, e.g. insert defaults/mk.conf or similar her e
.else

OpenBSD stuff

.endif

3.2.7. Solaris

Solaris 2.6 through 9 are supported on both x86 and sparcwitbneed a working C compiler. Both
gcc 2.95.3 and Sun WorkShop 5 have been tested.

The following packages are required on Solaris 8 for the toay process and to build packages.

« SUNWSsprot

+ SUNWarc

+ SUNWhbtool

« SUNW:too

« SUNWIibm

Please note the use of GNU binutils on Solarisassupported.

Whichever compiler you use, please ensure the compiles tad your $prefix are in yolATH This
includes/usr/ccs/{bin,lib} and e.g/usr/pkg/{bin,sbin}

3.2.7.1. If you are using gcc
It makes life much simpler if you only use the same gcc coestst for building all packages.

It is recommended that an external gcc be used only for rapising, then either build gcc from
lang/gcc orinstall a binary gcc package, then remove gcc used dudntstrapping.

Binary packages of gcc can be found through
http://www.sun.com/bigadmin/common/freewareSeatal.h

3.2.7.2. If you are using Sun WorkShop
You will need at least the following packages installedifird/orkShop 5.0)

« SPROcc - Sun WorkShop Compiler C 5.0
« SPROcpl - Sun WorkShop Compiler C++ 5.0
« SPROild - Sun WorkShop Incremental Linker

11

Chapter 3. Using pkgsrc on systems other than NetBSD

« SPROlang - Sun WorkShop Compilers common components

You should seCC CxXXand optionallyCPPin /etc/mk.conf , e.g.:

CC= cc
CXX= CcC
CPP= Jusr/ccsl/lib/cpp

3.2.7.3. Buildling 64-bit binaries with SunPro

Building 64-bit binaries is a little trickier. First, you ad to bootstrap pkgsrc in 64-bit mode. One
problem here is that while building one of the programs inttbetstrap kit fmake), theCFLAGS
variable is not honored, even if it is set in the environm&atwork around this bug, you can create a
simple shell script calledc64 and put it somewhere in tHATH

#! /bin/sh
exec /opt/SUNWSspro/bin/cc -xtarget=ultra -xarch=v9 ${1+ "$@"}

Then, pass the definition f@cCin the environment of thbootstrap command:

$ cd bootstrap
$ CC=cc64 ./bootstrap

After bootstrapping, there are two alternative ways, ddpanon whether you want to find bugs in
packages or get your system ready quickly. If you just waninaming system, add the following lines to
yourmk.conf file:

CC= cc64
CXX= CCo64
PKGSRC_COMPILER= sunpro

This way, all calls to the compiler will be intercepted by #imve wrapper and therefore get the
necessary ABI options automatically. (Don't forget to deethe shell scrip€C64, too.)

To find packages that ignore the user-specifiedAGSandCXXFLAGSadd the following lines to your
mk.conf file:

CC= cc

CXX= CcC
PKGSRC_COMPILER= sunpro

CFLAGS= -xtarget=ultra -xarch=v9
CXXFLAGS= -xtarget=ultra -xarch=v9
LDFLAGS= -xtarget=ultra -xarch=v9

Packages that don'’t use the flags provided in the configurétewill try to build 32-bit binaries and
fail during linking. Detecting this is useful to prevent lsugn other platforms where the error would not
show up but pass silently.

12

Chapter 3. Using pkgsrc on systems other than NetBSD

3.2.7.4. Common problems

Sometimes, when usirliptool, /bin/ksh crashes with a segmentation fault. The workaround is to use
another shell for the configure scripts, for example by ifistashells/bash ~ and adding the following
lines to youmk.conf :

CONFIG_SHELL= ${LOCALBASE}/bin/bash
WRAPPER_SHELL= ${LOCALBASE}/bin/bash

13

Chapter 4.
Using pkgsrc

Basically, there are two ways of using pkgsrc. The first isrtly install the package tools and to use
binary packages that someone else has prepared. This igkbeifi pkgsrc. The second way is to install
the “src” of pkgsrc, too. Then you are able to build your owokzges, and you can still use binary
packages from someone else.

4.1. Using binary packages

To use binary packages, you need some tools to manage theNetB8D, these tools are already
installed. On all other operating systems, you need tolirtetam first. For the following platforms,
prebuilt versions of the package tools are available angitaply be downloaded and unpacked in the

directory:
Platform URL
Solaris 5.10 http://public.enst.fr/pkgsrc/packages/bootstrap-pkg

These prebuilt package tools user/pkg for the base directory, andar/db/pkg ~ for the database of
installed packages. If you cannot use these directoriestiatever reasons (maybe because you're not
root), you have to build the package tools yourself, whiokxglained inSection 3.1

4.1.1. Finding binary packages

To install binary packages, you first need to know from wherget them. You can get them on
CD-ROMs, DVDs, or via FTP or HTTP.

For NetBSD, the binary packages are made availabfgoyetBSD.org and its mirrors, in the
directory/pub/NetBSD/packages/ ~ OSVERSI ON/ ARCH/ . For OSVERSI ON, you should insert the output
of uname -r, and forARCH the output ofuname -p.

For some other platforms, binary packages can be found &blibe/ing locations:

Platform URL
Solaris 5.10 http://public.enst.fr/pkgsrc/packages/

In each of these directories, there is a subdirecidirythat contains all the binary packages. Further,
there are subdirectories for categories that contain siimlptks that point to the actual binary package
in../All . This directory layout is used for all package repositgmesmatter if they are accessed via
HTTP, FTP, NFS, CD-ROM, or the local filesystem.

14

Chapter 4. Using pkgsrc

4.1.2. Installing binary packages

If you have the files on a CD-ROM or downloaded them to your lais, you can install them with the
following command (be sure t&u to root first):

pkg_add /path/tol/ package.tgz

If you have FTP access and you don’t want to download the ggeskaia FTP prior to installation, you
can do this automatically by givingkg_addan FTP URL:

pkg_add ftp://ftp. Net BSD. or g/ pub/ Net BSD/ packages/ <OSVERSI ON>/ <ARCH>/ Al | / package. t gz

Note that any prerequisite packages needed to run the paakagestion will be installed, too,
assuming they are present where you install from.

To save some typing, you can set #&G_PATHenvironment variable to a semicolon-separated list of
paths (including remote URLS); trailing slashes are naivedid.

Additionally to theAll directory there existsaulnerable directory to which binary packages with

known vulnerabilities are moved, since removing them cealdse missing dependencies. To use these
packages, add thailnerable directory to youlPrKG_PATHHowever, you should run

security/audit-packages regularly, especially after installing new packages, agify that the
vulnerabilities are acceptable for your configuration. AaraplePKG_PATHvould be:
ftp://ftp.NetBSD.org/pub/NetBSD/packages/<OSVERSION >/<ARCH>/All;ftp://ftp.NetBSD.org/pub/NetBS
Please note that semicolon (’;") is a shell meta-charasteyou’ll probably have to quote it.

After you've installed packages, be sure to haxe/pkg/bin and/usr/pkg/sbin in your PATHSO
you can actually start the just installed program.

4.1.3. A word of warning

Please pay very careful attention to the warnings expraagéé pkg_add(1) manual page about the
inherent dangers of installing binary packages which yolndit create yourself, and the security holes
that can be introduced onto your system by indiscriminatiraedof such files.

The same warning of course applies to every package yodlifista source when you haven't
completely read and understood the source code of the pactkegcompiler that is used to build the
package and all the other tools that are involved.

4.2. Building packages from source

This assumes that the package is already in pkgsrc. If ittisseePart 1l in The pkgsrc guidér
instructions how to create your own packages.

4.2.1. Requirements

To build packages from source on a NetBSD system the “comgb'tiaa “text” distribution sets must be
installed. If you want to build X11-related packages theds®’ and “xcomp” distribution sets are
required, too.

15

Chapter 4. Using pkgsrc

4.2.2. Fetching distfiles

The first step for building a package is downloading the distfji.e. the unmodified source). If they have
not yet been downloaded, pkgsrc will fetch them automdsical

You can overwrite some of the major distribution sites todisites that are close to your own. Have a
look atpkgsrc/mk/defaults/mk.conf to find some examples — in particular, look for the
MASTER_SORMASTER_SORT_REGEBXdINET_COUNTRMefinitions. This may save some of your
bandwidth and time.

You can change these settings either in your shell’s enmigont, or, if you want to keep the settings, by
editing the/etc/mk.conf file, and adding the definitions there.

If you don’t have a permanent Internet connection and you tgaknow which files to downloadnake
fetch-list will tell you what you'll need. Put these distfiles intasr/pkgsrc/distfiles

4.2.3. How to build and install

Assuming that the distfile has been fetched (see previoti®sgdecome root and change into the
relevant directory and rumake.

Note: If using bootstrap or pkgsrc on a non-NetBSD system, use the pkgsrc bmake command
instead of “make” in the examples in this guide.

For example, type

% cd msc/figlet
% make

at the shell prompt to build the various components of th&pge, and

make install

to install the various components into the correct placegoom system. Installing the package on your
system requires you to be root. However, pkgsrc hastin-time-sifeature, which allows you to only
become root for the actual installation step

Taking the figlet utility as an example, we can install it om system by building as shown in
Appendix B

The program is installed under the default root of the paekadgee /usr/pkg . Should this not

conform to your tastes, set th@ CALBASEariable in your environment, and it will use that value as th
root of your packages tree. So, to ussr/local , SetLOCALBASE=/ust/local in your environment.
Please note that you should use a directory which is deditatpackages and not shared with other
programs (i.e., do not try and us®@CALBASE=/usr). Also, you should not try to add any of your own
files or directories (such asc/ , obj/ , orpkgsrc/) below theLOCALBASHree. This is to prevent
possible conflicts between programs and other files insthethe package system and whatever else
may have been installed there.

Some packages look fatc/mk.conf to alter some configuration options at build time. Have a labk
pkgsrc/mk/defaults/mk.conf to get an overview of what will be set there by default. Ennireent

16

Chapter 4. Using pkgsrc

variables such asOCALBASEan be set ietc/mk.conf to save having to remember to set them each
time you want to use pkgsrc.

Occasionally, people want to “look under the covers” to seatis going on when a package is building
or being installed. This may be for debugging purposes, bobsimple curiosity. A number of utility
values have been added to help with this.

1. If you invoke the make(1) command wilKG_DEBUG_LEVEL=2hen a huge amount of
information will be displayed. For example,

make patch PKG DEBUG LEVEL=2
will show all the commands that are invoked, up to and inclgdhe “patch” stage.

2. If you want to know the value of a certain make(1) definitiden thevARNAMEefinition should be
used, in conjunction with the show-var target. e.g. to shmwexpansion of the make(1) variable
LOCALBASE
% make show var VARNAMVE=LOCALBASE

usr/pkg
%

If you want to install a binary package that you've eitherategl yourself (see next section), that you put
into pkgsrc/packages manually or that is located on a reffibeserver, you can use the "bin-install”
target. This target will install a binary package - if avhl&- via pkg_add(1), else doraake package

The list of remote FTP sites searched is kept in the variaiNeKG_SITES, which defaults to
ftp.NetBSD.org. Any flags that should be added to pkg_adcHfh)be put int@IN_INSTALL_FLAGS.
Seepkgsrc/mk/defaults/mk.conf for more details.

A final word of warning: If you set up a system that has a nonddad setting fot OCALBASEDbe sure

to set that before any packages are installed, as you carseseweral directories for the same purpose.
Doing so will result in pkgsrc not being able to properly a¢tgour installed packages, and fail
miserably. Note also that precompiled binary packagessuelly built with the default OCALBASEf
lusripkg , and that you shouldotinstall any if you use a non-standat@CALBASE

4.2.4. Selecting the compiler

By default, pkgsrc will use GCC to build packages. This mapwerridden by setting the following
variables in /etc/mk.conf:

PKGSRC_COMPILER

This is a list of values specifying the chain of compilersrteake when building packages. Valid
values are:

. distcc : distributed C/C++ (chainable)

- ccache : compiler cache (chainable)

« gcc: GNU C/C++ Compiler

« mipspro : Silicon Graphics, Inc. MIPSpro (n32/n64)
« mipspro : Silicon Graphics, Inc. MIPSpro (032)

17

Chapter 4. Using pkgsrc

« sunpro : Sun Microsystems, Inc. WorkShip/Forte/Sun ONE Studio

The default is §cc ”. You can useccache and/ordistcc with an appropriateKGSRC_COMPILER
setting, e.g. écache gcc ". This variable should always be terminated with a valuegfoeal
compiler.

GCC_REQD

This specifies the minimum version of GCC to use when builgiagkages. If the system GCC
doesn't satisfy this requirement, then pkgsrc will buildianstall one of the GCC packages to use
instead.

18

Chapter 5.
Configuring pkgsrc

5.1. General configuration

In this section, you can find some variables that apply tokadkspc packages. The preferred method of
setting these variables is by setting themteiia/mk.conf

« LOCALBASEWhere packages will be installed. The defaulus/pkg . Do not mix binary packages
with differentLOCALBASE!

+ CROSSBASBEWhere “cross” category packages will be installed. Thedkis
${LOCALBASE}/cross

« X11BASE Where X11 is installed on the system. The default$s/X11R6

- DISTDIR : Where to store the downloaded copies of the original sodisteibutions used for building
pkgsrc packages. The defauli*KGSRCDIR}/distfiles

« MASTER_SITE_OVERRIDHf set, override the packageASTER_SITESwith this value.

« MASTER_SITE_BACKUMBackup location(s) for distribution files and patch fileadft found locally or
in ${MASTER_SITES} or ${PATCH_SITES} respectively. The defaults are
ftp://ftp.NetBSD.org/pub/NetBSD/packages/distfiles/ ${DIST_SUBDIRY and
ftp://ftp.freebsd.org/pub/FreeBSD/distfiles/${DIST_ SUBDIRY/ .

- BINPKG_SITES: List of sites carrying binary pkgs.

5.2. Variables affecting the build process
XXX

« PACKAGESThe top level directory for the binary packages. The defiaul
${PKGSRCDIR}/packages

- WRKOBJDIRThe top level directory where, if defined, the separate wgrklirectories will get
created, and symbolically linked to frof{WRKDIR} (see below). This is useful for building packages
on several architectures, th$fPKGSRCDIR} can be NFS-mounted whil§WRKOBJDIR} is local to
every architecture. (It should be noted tREIGSRCDIRshould not be set by the user — it is an internal
definition which refers to the root of the pkgsrc tree. It isgible to have many pkgsrc tree instances.)

+ LOCALPATCHEDirectory for local patches that aren’t part of pkgsrc. Seetion 8.3or more
information.r el andar ch are replaced with OS release (“2.0”, etc.) and architedtungsel”, etc.).

19

Chapter 5. Configuring pkgsrc

+ PKGMAKECONEocation of themk.conf file used by a package’s BSD-style Makefile. If this is not
set,MAKECONI5 set to/dev/null to avoid picking up settings used by buildsisr/src

5.3. Developer/advanced settings
XXX

« PKG_DEVELOPERRuUN some sanity checks that package developers want:

- make sure patches apply with zero fuzz

- run check-shlibs to see that all binaries will find their sithlibs.

« PKG_DEBUG_LEVEILThe level of debugging output which is displayed whilst ingkand installing
the package. The default value for this is 0, which will nataday the commands as they are executed
(normal, default, quiet operation); the value 1 will digp&dl shell commands before their invocation,
and the value 2 will display both the shell commands befoe& thvocation, and their actual
execution progress witbet -xwill be displayed.

« ALLOW_VULNERABILITIES. pkgbase: A space separated list of vulnerability IDs that may be rgao
when performing the automated security checks. These I®bséed in the pkg-vulnerabilities file
and are displayed bgudit-packageswhen it finds a vulnerable package.

- SKIP_AUDIT_PACKAGESIf this is set to “yes”, the automated security checks (Wwhise the
security/audit-packages package) will beentirely skipped forall packages built. Normally
you'll want to use ALLOW_VULNERABILITIES instead of this.

5.4. Selecting Build Options

Some packages have build time options, usually to selewatgaet different dependencies, enable
optional support for big dependencies or enable experiahégdtures.

To see which options, if any, a package supports, and whitibregare mutually exclusive, rumake
show-options for example:

The following options are supported by this package:
ssl Enable SSL support.
Exactly one of the following gecko options is required:
firefox Use firefox as gecko rendering engine.
mozilla Use mozilla as gecko rendering engine.
At most one of the following database options may be selected
mysq|l Enable support for MySQL database.
pgsql Enable support for PostgreSQL database.

These options are enabled by default: firefox
These options are currently enabled: mozilla ssl

20

Chapter 5. Configuring pkgsrc

The following variables can be defined/#c/mk.conf to select which options to enable for a
packagePKG_DEFAULT_OPTIONSvhich can be used to select or disable options for all paeské#uat
support them, anBKG_OPTIONSpkgbase, which can be used to select or disable options specifically
for packagepkgbase. Options listed in these variables are selected, optioasgaied by “-” are
disabled. A few examples:

$ grep "PKG *OPTI ON' /etc/nk. conf

PKG_DEFAULT_OPTIONS= -arts -dvdread -esound
PKG_OPTIONS.kdebase= debug -sasl
PKG_OPTIONS.apache= suexec

The following settings are consulted in the order given, taedast setting that selects or disables an
option is used:

1. the default options as suggested by the package maintaine
2. the options implied by the settings of legacy variableg (selow)
3.PKG_DEFAULT_OPTIONS

4. PKG_OPTIONSpkgbase

For groups of mutually exclusive options, the last optidested is used, all others are automatically
disabled. If an option of the group is explicitly disablele foreviously selected option, if any, is used. It
is an error if no option from a required group of options iesttd, and building the package will fail.

Before the options framework was introduced, build optiese selected by setting a variable (often
namedJSE_FQO) in /etc/mk.conf for each option. To ease transition to the options framevarkhe
user, these legacy variables are converted to the appr@ppéons settingRKG_OPTIONSpkgbase)
automatically. A warning is issued to prompt the user to t@tac/mk.conf to use the options
framework directly. Support for the legacy variables w#l iemoved eventually.

21

Chapter 6.
Creating binary packages

6.1. Building a single binary package

Once you have built and installed a package, you can crdaiteagy packagevhich can be installed on
another system with pkg_add(1). This saves having to bo#@dsame package on a group of hosts and
wasting CPU time. It also provides a simple means for otteensstall your package, should you
distribute it.

To create a binary package, change into the appropriatetditein pkgsrc, and rumake package

cd msc/figlet
make package

This will build and install your package (if not already dyrend then build a binary package from what
was installed. You can then use thiey_* tools to manipulate it. Binary packages are created by dtefau
in /usr/pkgsrc/packages , in the form of a gzipped tar file. S&ection B.2Zor a continuation of the
abovemisc/figlet example.

SeeChapter 18or information on how to submit such a binary package.

6.2. Settings for creation of binary packages
SeeSection 14.16

6.3. Doing a bulk build of all packages

If you want to get a full set of precompiled binary packagbis section describes how to get them.
Beware that the bulk build will remove all currently instadipackages from your system!

Having an FTP server configured either on the machine domgutk builds or on a nearby NFS server
can help to make the packages available to other machinesath#hen save time by installing only the
binary packages. See ftpd(8) for more information. If yoe asemote NFS server’s storage, be sure to
not actually compile on NFS storage, as this slows thingsdavot.

6.3.1. Configuration
6.3.1.1. bui I d. conf

Thebuild.conf file is the main configuration file for bulk builds. You can capfie how your copy of
pkgsrc is kept up to date, how the distfiles are downloadead the packages are built and how the report

22

Chapter 6. Creating binary packages

is generated. You can find an annotated example fipggarc/mk/bulk/build.conf-example .To
use it, copybuild.conf-example to build.conf ~ and edit it, following the comments in that file.

6.3.1.2. /etc/mk.conf

You may want to set variables iatc/mk.conf . Look atpkgsrc/mk/defaults/mk.conf for details
of the default settings. You will want to ensure tAatCEPTABLE_LICENSE®neet your local policy. As
used in this example ACCEPTABLE=yesacceptall licenses.

PACKAGES?= ${_PKGSRCDIR}/packages/${MACHINE_ARCH}
WRKOBJDIR?= lusritmp/pkgsrc ~ # build here instead of in pkgs rc
BSDSRCDIR= lustr/src

BSDXSRCDIR= lusr/xsrc # for x1l/xservers

OBJHOSTNAME?= yes # use work.‘hostname’
FAILOVER_FETCH= yes # insist on the correct checksum
PKG_DEVELOPER?= yes

_ACCEPTABLE= yes

Some options that are especially useful for bulk builds eafolbind at the top lines of the file
mk/bulk/bsd.bulk-pkg.mk . The most useful options of these are briefly described here.

- If you are on a slow machine, you may want to §68E_BULK_BROKEN_CHE®@X"no”.

- If you are doing bulk builds from a read-only copy of pkgsrouyhave to sSeBULKFILESDIR to the
directory where all log files are created. Otherwise the lleg fare created in the pkgsrc directory.

- Another important variable iBULK_PREREQwhich is a list of packages that should be always
available while building other packages.

Some other options are scattered in the pkgsrc infrastrictu

« ALLOW_VULNERABLE_PACKAG&E®uUId be set tges . The purpose of the bulk builds is creating
binary packages, no matter if they are vulnerable or not. Wioading the packages to a public
server, the vulnerable packages will be put into a direavéitreir own. Leaving this variable unset
would prevent the bulk build system from even trying to biildm, so possible building errors would
not show up.

« CHECK_FILES(pkgsrc/mk/bsd.pkg.check.mk) can be set to “yes” to check that the installed set
of files matches theLIST .

« CHECK_INTERPRETERpkgsrc/mk/bsd.pkg.check.mk) can be set to “yes” to check that the
installed “#!"-scripts will find their interpreter.

6.3.1.3. pre-bui I d. | ocal

It is possible to configure the bulk build to perform certate-specific tasks at the end of the pre-build
stage. If the fileore-build.local exists in/usr/pkgsrc/mk/bulk , it will be executed (as a sh(1)
script) at the end of the usual pre-build stage. An exampeofigre-build.local is to have the line:

echo "I do not have enough disk space to build this pig." \
> pkgsrc/ m sc/ openof fi ce/ $BROKENF

23

Chapter 6. Creating binary packages

to prevent the system from trying to build a particular pagkevhich requires nearly 3 GB of disk space.

6.3.2. Other environmental considerations

As/usr/pkg will be completely deleted at the start of bulk builds, makeesyour login shell is placed
somewhere else. Either drop it inft@r/local/bin (and adjust your login shell in the passwd file), or
(re-)install it via pkg_add(2) fronetc/rc.local , SO you can login after a reboot (remember that your
current process won't die if the package is removed, yougastt start any new instances of the shell
any more). Also, if you use NetBSD earlier than 1.5, or yollwgnt to use the pkgsrc version of ssh for
some reason, be sure to install ssh before starting it fedotal

(cd Jusr/pkgsrc/security/ssh ; make bulk-install)

if [-f /usr/pkgl/etc/rc.d/sshd]; then
lusr/pkg/etc/rc.d/sshd

fi

Not doing so will result in you being not able to log in via ssteathe bulk build is finished or if the
machine gets rebooted or crashes. You have been warned! :)

6.3.3. Operation

Make sure you don’t need any of the packages still installed.

Warning

During the bulk build, all packages will be removed!

Be sure to remove all other things that might interfere witkids, like some libs installed in
/usr/local , etc. then become root and type:

cd /usr/pkgsrc
sh nk/bul k/build

If for some reason your last build didn’t complete (powelfiad, system panic, ...), you can continue it
by running:

sh nk/bul k/build restart

At the end of the bulk build, you will get a summary via mailgdimd build logs in the directory
specified byrTP in thebuild.conf file.

6.3.4. What it does

The bulk builds consist of three steps:

24

Chapter 6. Creating binary packages

1. pre-build
The script updates your pkgsrc tree via (anon)cvs, themsleat any broken distfiles, and removes
all packages installed.

2. the bulk build

This is basically “make bulk-package” with an optimisederth which packages will be built.
Packages that don'’t require other packages will be buitt firsd packages with many dependencies
will be built later.

3. post-build

Generates a report that's placed in the directory specifi¢ioibuild.conf file named
broken.html , a short version of that report will also be mailed to the digiadmin.

During the build, a list of broken packages will be compileduisr/pkgsrc/.broken (or
.../.broken.${MACHINE} if OBJIMACHINES set), individual build logs of broken builds can be found
in the package’s directory. These files are used by the lautiets to mark broken builds to not waste
time trying to rebuild them, and they can be used to debugethesken package builds later.

6.3.5. Disk space requirements
Currently, roughly the following requirements are valid fetBSD 2.0/i386:

- 10 GB - distfiles (NFS ok)
« 8 GB - full set of all binaries (NFS ok)
« 5 GB - temp space for compiling (local disk recommended)

Note that all pkgs will be de-installed as soon as they ameiinto a binary package, and that sources
are removed, so there is no excessively huge demand to disk sfffterwards, if the package is needed
again, it will be installed via pkg_add(1) instead of builgiagain, so there are no cycles wasted by
recompiling.

6.3.6. Setting up a sandbox for chrooted builds

If you don’t want all the packages nuked from a machine (rendet useless for anything but pkg
compiling), there is the possibility of doing the packagétwild inside a chroot environment.

The first step is to set up a chroot sandbox, &ig/sandbox . This can be done by using null mounts,
or manually.

There is a shell script callggkgsrc/mk/bulk/mksandbox which will set up the sandbox environment
using null mounts. It will also create a script callthdbox in the root of the sandbox environment,
which will allow the null mounts to be activated using tendbox mountcommand and deactivated
using thesandbox umountcommand.

To set up a sandbox environment by hand, after extractin@atets from a NetBSD installation or
doing amake distribution DESTDIR=/usr/sandbox in /usr/src/etc , be sure the following items
are present and properly configured:

25

Chapter 6. Creating binary packages

1. Kernel
cp /netbsd /usr/sandbox
2. [devl =
cd /usr/sandbox/dev ; sh MAKEDEV al
3. letc/resolv.conf (for security/smtpd and mail):
cp /etc/resolv.conf /usr/sandbox/etc
4. Working(!) mail config (hostname, sendmail.cf):
cp /etc/mail/sendnail.cf /usr/sandbox/etc/nail
5. /etc/localtime (for security/smtpd ~):
In -sf /[usr/share/zoneinfo/ UTC /usr/sandbox/etc/|ocal tinme
6. Jusrisrc (system sources, faysutils/aperture , net/ppp-mppe):

In -s ../diskl/cvs .
#1n -s cvs/src-2.0 src

7. Creatdvar/db/pkg (not part of default install):
nkdir /usr/sandbox/ var/ db/ pkg
8. Creatdusr/pkg (not part of default install):
nkdir /usr/sandbox/ usr/ pkg
9. Checkout pkgsrc via cvs infasr/sandbox/usr/pkgsrc

cd /usr/sandbox/ usr
cvs -d anoncvs@noncvs. Net BSD. org: / cvsroot checkout -d -P pkgsrc

Do not mount/link this to the copy of your pkgsrc tree you deelepment in, as this will likely
cause problems!

10. Make/usr/sandbox/usr/pkgsrc/packages and.../distfiles point somewhere
appropriate. NFS- and/or nullfs-mounts may come in handy!

11. Edit/etc/mk.conf , seeSection 6.3.1.2
12. Adjustmk/bulk/build.conf to suit your needs.

When the chroot sandbox is set up, you can start the buildtiwittiollowing steps:

cd /usr/sandbox/ usr/ pkgsrc
sh nk/ bul k/ do- sandbox- bui | d

This will just jump inside the sandbox and start building td¢ end of the build, mail will be sent with
the results of the build. Created binary pkgs will béusr/sandbox/usr/pkgsrc/packages
(wherever that points/mounts to/from).

6.3.7. Building a partial set of packages

In addition to building a complete set of all packages in p&ghepkgsrc/mk/bulk/build script
may be used to build a subset of the packages contained inqIByssettingSPECIFIC_PKGSin
letc/mk.conf , the variables

26

Chapter 6. Creating binary packages

. SITE_SPECIFIC_PKGS
. HOST_SPECIFIC_PKGS
. GROUP_SPECIFIC_PKGS
. USER_SPECIFIC_PKGS

will define the set of packages which should be built. The lwikd code will also include any packages
which are needed as dependencies for the explicitly liste#tqyes.

One use of this is to do a bulk build wiBPECIFIC_PKGSin a chroot sandbox periodically to have a
complete set of the binary packages needed for your sitéablaivithout the overhead of building extra
packages that are not needed.

6.3.8. Uploading results of a bulk build

This section describes how pkgsrc developers can uploaaybpkgs built by bulk builds to
ftp.NetBSD.org.

If you would like to automatically create checksum files foe binary packages you intend to upload,
remember to seMIKSUMS=yesn your mk/bulk/build.conf

If you would like to PGP sign the checksum files (highly recoemaied!), remember to set
SIGN_AS=username@NetBSD.org in your mk/bulk/build.conf . This will prompt you for your
GPG password to sign the files before uploading everything.

Then, make sure that you haR8YNC_DSBet properly in youmk/bulk/build.conf file, i.e. adjust it
to something like one of the following:

RSYNC_DST=ftp.NetBSD.org:/pub/NetBSD/packages/pkgsr c-200xQy/NetBSD-a.b.c/arch/upload

Please use appropriate values for "pkgsrc-200xQy", "NBtRD.c" and "arch" here. If your login on
ftp.NetBSD.org is different from your local login, write yologin directly into the variable, e.g. my
local account is "feyrer", but for my login "hubertf", | use:

RSYNC_DST=hubertf@ftp.NetBSD.org:/pub/NetBSD/packag es/pkgsrc-200xQy/NetBSD-a.b.c/arch/upload

A separateipload directory is used here to allow "closing" the directory dgrupload. To do so, run
the following command on ftp.NetBSD.org next:

nbftp% nkdir -p -m 750 / pub/ Net BSDY packages/ pkgsr c- 200xQy/ Net BSD- a. b. ¢/ ar ch/ upl oad

Please note th#pub/NetBSD/packages is only appropriate for packages for the NetBSD operating
system. Binary packages for other operating systems slgauiltto/pub/pkgsrc

Before uploading the binary pkgs, ssh authentication neels set up. This example shows how to set
up temporary keys for the root accoumside the sandbofassuming that no keys should be present there
usually):

chroot /usr/sandbox

chroot- # rm $HOVE/ . ssh/i d- dsa*
chroot- # ssh-keygen -t dsa

chroot- # cat $HOVE/ . ssh/id-dsa. pub

27

Chapter 6. Creating binary packages

Now take the output ofi-dsa.pub and append it to yout/.ssh/authorized_keys file on
ftp.NetBSD.org. You can remove the key after the upload izedo

Next, test if your ssh connection really works:

chroot- # ssh ftp.NetBSD.org date

Use "-I yourNetBSDlogin" here as appropriate!

Now after all this works, you can exit the sandbox and statughload:

chroot- # exit
cd /usr/sandbox/ usr/pkgsrc
sh nk/ bul k/ do- sandbox- upl oad

The upload process may take quite some time. Use Is(1) o) da(the FTP server to monitor progress
of the upload. The upload script will take care of not uploadiestricted packages and putting
vulnerable packages into tkelnerable subdirectory.

After the upload has ended, first thing is to revoke ssh access

nbftp% vi ~/.ssh/aut horized_keys
Gdd:x!

Use whatever is needed to remove the key you've enteredéddfast, move the uploaded packages out
of theupload directory to have them accessible to everyone:

nbftp% cd / pub/ Net BSDY packages/ pkgsr c- 200xQy/ Net BSD- a. b. ¢/ ar ch
nbftp% nv upl oad/ * .

nbftp% rndir upl oad

nbftp% chnod 755 .

6.4. Creating a multiple CD-ROM packages collection

After your pkgsrc bulk-build has completed, you may wishteate a CD-ROM set of the resulting
binary packages to assist in installing packages on othehimes. Thepkgtools/cdpack package
provides a simple tool for creating the ISO 9660 imagepack arranges the packages on the
CD-ROMs in a way that keeps all the dependencies for a givekgage on the same CD as that package.

6.4.1. Example of cdpack

Complete documentation for cdpack is found in the cdpaaki@n page. The following short example
assumes that the binary packages are lefidripkgsrc/packages/All and that sufficient disk
space exists ifu2 to hold the ISO 9660 images.

nkdir /u2/inages
pkg_add /usr/ pkgsrc/packages/ Al | / cdpack
cdpack /usr/pkgsrc/ packages/ Al'l /u2/images

If you wish to include a common set of fileSQPYRIGHTREADMEetc.) on each CD in the collection,
then you need to create a directory which contains these élgs

28

HOH KRR HH

nkdi r /tnp/ common

echo "This is a README' > /tnp/ conmon/ READVE

echo "Another file" > /tnp/comron/ COPYlI NG

nkdi r /tnp/ comon/ bin

echo "#!/bin/sh" > /tnp/ comon/bin/ nyscri pt

echo "echo Hello world" >> /tnp/common/ bin/nyscript
chnmod 755 /t np/ common/ bi n/ nyscri pt

Now create the images:

#

cdpack -x /tnp/comon /usr/pkgsrc/packages/ Al l

Each image will contaiREADMECOPYING andbin/myscript

Chapter 6. Creating binary packages

/u2/i mages

in their root directories.

29

Chapter 7.
Frequently Asked Questions

This section contains hints, tips & tricks on special thimgpkgsrc that we didn’t find a better place for
in the previous chapters, and it contains items for both pkgsers and developers.

7.1. Are there any mailing lists for pkg-related discussion ?

The following mailing lists may be of interest to pkgsrc wsser

« pkgsrc-bugs (http://mww.NetBSD.org/MailingLists/indbtml#pkgsrc-bugs): A list where problem
reports related to pkgsrc are sent and discussed.

« pkgsrc-bulk (http://www.NetBSD.org/MailingLists/ingdatml#pkgsrc-bulk): A list where the results
of pkgsrc bulk builds are sent and discussed.

- pkgsrc-changes (http://www.NetBSD.org/MailingListslex.html#pkgsrc-changes): A list where all
commit messages to pkgsrc are sent.

« tech-pkg (http://www.NetBSD.org/MailingLists/indexrhl#tech-pkg): A general discussion list for all
things related to pkgsrc.

To subscribe, do:

% echo subscribe li stnanme | mail majordomo@NetBSD.org

Archives for all these mailing lists are available from httpail-index.NetBSD.org/.

7.2. Where’s the pkgviews documentation?

Pkgviews is tightly integrated with buildlink. You can fing&gviews User’s guide in
pkgsrc/mk/buildlink3/PKGVIEWS_UG

7.3. Utilities for package management (pkgtools)

Thepkgsrc/pkgtools directory pkgtools contains a number of useful utilitiestfoth users and
developers of pkgsrc. This section attempts only to makeghéer aware of the utilities and when they
might be useful, and not to duplicate the documentationdbiates with each package.

Utilities used by pkgsrc (automatically installed when ced):

« pkgtools/x11-links : Symlinks for use by buildlink.

OS tool augmentation (automatically installed when negded

30

Chapter 7. Frequently Asked Questions

« pkgtools/digest : Calculates various kinds of checksums (including SHA1).
« pkgtools/libnbcompat : Compatibility library for pkgsrc tools.
« pkgtools/mtree : Installed on non-BSD systems due to lack of native mtree.

- pkgtools/pkg_install : Up-to-date replacement fawsr/sbin/pkg_install ,or for use on
operating systems where pkg_install is not present.

Utilities used by pkgsrc (not automatically installed):

«+ pkgtools/pkg_tarup : Create a binary package from an already-installed packaggd bymake
replaceto save the old package.

« pkgtools/dfdisk : Adds extra functionality to pkgsrc, allowing it to fetchstfiles from multiple
locations. It currently supports the following methods:tiple CD-ROMs and network FTP/HTTP
connections.

- pkgtools/xpkgwedge : Put X11 packages someplace else (enabled by default).

- devel/cpuflags : Determine the best compiler flags to optimise code for yourent CPU and
compiler.

Utilities for keeping track of installed packages, beingapate, etc:

« pkgtools/pkg_chk : Reports on packages whose installed versions do not ntagdhatest pkgsrc
entries.

+ pkgtools/pkgdep : Makes dependency graphs of packages, to aid in choosimgtagst for
updating.

- pkgtools/pkgdepgraph : Makes graphs from the output pkgtools/pkgdep (uses graphviz).

« pkgtools/pkglint : The pkglint(1) program checks a pkgsrc entry for errorgplgsrc(1) does
various checks on the complete pkgsrc system.

+ pkgtools/pkgsurvey : Report what packages you have installed.

Utilities for people maintaining or creating individualgkages:

« pkgtools/pkgdiff : Automate making and maintaining patches for a packagéu@es pkgdiff,
pkgvi, mkpatches, etc.).

- pkgtools/rpm2pkg , pkgtools/url2pkg : Aids in converting to pkgsrc.
- pkgtools/gensolpkg : Convert pkgsrc to a Solaris package.

Utilities for people maintaining pkgsrc (or: more obscukg pitilities)

+ pkgtools/pkg_comp : Build packages in a chrooted area.

« pkgtools/libkver : Spoof kernel version for chrooted cross builds.

31

Chapter 7. Frequently Asked Questions

7.4. How to use pkgsrc as non-root

If you want to use pkgsrc as non-root user, you can set sonmle@s to make pkgsrc work under these
conditions. At the very least, you need to B&PRIVILEGEDto0 “yes”; this will turn on unprivileged
mode and set multiple related variables to allow instafatf packages as non-root.

In case the defaults are not enough, you may want to tune sthaevariables used. For example, if the
automatic user/group detection leads to incorrect valoesdt the ones you would like to use), you can
change them by settingNPRIVILEGED _USERMINdUNPRIVILEGED_GROURespectively.

As regards bootstrapping, please note thabiteatstrap script will ease non-root configuration when
given the “--ignore-user-check” flag, as it will choose aise multiple default directories undefipkg

as the installation targets. These directories can beideerby the “--prefix” flag provided by the script,
as well as some others that allow finer tuning of the tree layou

7.5. How to resume transfers when fetching distfiles?

By default, resuming transfers in pkgsrc is disabled, butgan enable this feature by adding the option
PKG_RESUME_TRANSFERS=YiE® /etc/mk.conf . If, during a fetch step, an incomplete distfile is
found, pkgsrc will try to resume it.

You can also use a different program than the default ftpglohanging thesETCH_CMDariable. Don't
forget to seFETCH_RESUME_ARG®JFETCH_OUTPUT_ARGHByou are not using default values.

For example, if you want to useget to resume downloads, you'll have to use something like:

FETCH_CMD= wget
FETCH_BEFORE_ARGS= --passive-ftp
FETCH_RESUME_ARGS= -
FETCH_OUTPUT_ARGS= -0

7.6. How can | install/use XFree86 from pkgsrc?

If you want to use XFree86 from pkgsrc instead of your syssemwn X11 (usr/X11R6 ,
fusrfopenwin , ...), you will have to add the following line intetc/mk.conf

X11_TYPE=XFree86

7.7. How can | install/use X.org from pkgsrc?

If you want to use X.org from pkgsrc instead of your systemis 11 (usr/X11R6 ,/usr/openwin
...) you will have to add the following line int@tc/mk.conf

X11 TYPE=xorg

Note: The DragonFly operating system defaults to using this X.org X11 implementation from pkgsrc.

32

Chapter 7. Frequently Asked Questions

7.8. How to fetch files from behind a firewall

If you are sitting behind a firewall which does not allow direannections to Internet hosts (i.e.
non-NAT), you may specify the relevant proxy hosts. Thisaa&l using an environment variable in the
form of a URL, e.g. in Amdahl, the machine “orpheus.amdaimhtis one of the firewalls, and it uses
port 80 as the proxy port number. So the proxy environmenakibas are:

ftp_proxy=ftp://orpheus.amdahl.com:80/
http_proxy=http://orpheus.amdahl.com:80/

7.9. How do | tell make fetch to do passive FTP?

This depends on which utility is used to retrieve distfileamrrbsd.pkg.mk , FETCH_CMIs assigned
the first available command from the following list:

- ${LOCALBASE}/bin/ftp
 [usr/bin/ftp

On a default NetBSD installation, this will esr/bin/ftp , which automatically tries passive
connections first, and falls back to active connectionsafgtrver refuses to do passive. For the other
tools, add the following to youetc/mk.conf file: PASSIVE_FETCH=1

Having that option present will prevehisr/bin/ftp from falling back to active transfers.

7.10. How to fetch all distfiles at once

You would like to download all the distfiles in a single batcbrh work or university, where you can’t
run amake fetch There is an archive of distfiles on ftp.NetBSD.org
(ftp://ftp.NetBSD.org/pub/NetBSD/packages/distfijeblt downloading the entire directory may not be
appropriate.

The answer here is to domaake fetch-listin /usr/pkgsrc or one of its subdirectories, carry the
resulting list to your machine at work/school and use itéhéryou don’t have a NetBSD-compatible
ftp(1) (like lukemftp) at work, don'’t forget to SEEETCH_CMMmo something that fetches a URL:

At home:

% cd /usr/pkgsrc
% make fetch-list FETCH CVD=wget DI STDI R=/tnp/distfiles >/tnp/fetch.sh
% scp /tnp/fetch.sh work:/tnp

At work:
% sh /tnp/fetch. sh

then tar uptmp/distfiles and take it home.

If you have a machine running NetBSD, and you want toadledistfiles (even ones that aren’t for your
machine architecture), you can do so by using the aboveiomauimake fetch-listapproach, or fetch
the distfiles directly by running:

33

Chapter 7. Frequently Asked Questions
% make mirror-distfiles

If you even decide to ignomeO_{SRC,BIN} _ON_{FTP,CDROM}, then you can get everything by
running:

% make fetch NO_SKI P=yes

7.11. What does “Don’'t know how to make
/usr/share/tmac/tmac.andoc” mean?

When compiling thepkgtools/pkg_install package, you get the error from make that it doesn’t
know how to makeusr/share/tmac/tmac.andoc ? This indicates that you don’t have installed the
“text” set (nroff, ...) from the NetBSD base distribution your machine. It is recommended to do that to
format man pages.

In the case of thekgtools/pkg_install package, you can get away with settiiQMAN=YEB8ither
in the environment or iretc/mk.conf

7.12. What does “Could not find bsd.own.mk” mean?

You didn't install the compiler setomp.tgz , when you installed your NetBSD machine. Please get and
install it, by extracting it ir’ :

cd /
tar --unlink -zxvpf .../conp.tgz

comp.tgz is part of every NetBSD release. Get the one that correspongsir release (determine via
uname -r).

7.13. Using 'sudo’ with pkgsrc

When installing packages as non-root user and using thénjshe su(1) feature of pkgsrc, it can
become annoying to type in the root password for each redjpmekage installed. To avoid this, the sudo
package can be used, which does password caching overeditimite. To use it, install sudo (either as
binary package or frorsecurity/sudo) and then put the following into youetc/mk.conf

if exists(${LOCALBASE}/bin/sudo)
SU_CMD= ${LOCALBASE}/bin/sudo /bin/sh -c
.endif

7.14. How do | change the location of configuration files?

As the system administrator, you can choose where configarfiies are installed. The default settings
make all these files go int)PREFIX}/etc or some of its subdirectories; this may be suboptimal

34

Chapter 7. Frequently Asked Questions

depending on your expectations (e.g., a read-only, NF®1@PREFIX with a need of per-machine
configuration of the provided packages).

In order to change the defaults, you can modifyPie&s_SYSCONFBASHrriable (in/etc/mk.conf) to
point to your preferred configuration directory; some comragamples includétc or /etc/pkg

Furthermore, you can change this value on a per-packagelbasetting the
PKG_SYSCONFDIR.${PKG_SYSCONFVARAariable PKG_SYSCONFVARvalue usually matches the
name of the package you would like to modify, that is, the ents# of PKGBASE

Note that after changing these settings, you must rebuddeinstall any affected packages.

7.15. Automated security checks

Please be aware that there can often be bugs in third-pdttyese, and some of these bugs can leave a
machine vulnerable to exploitation by attackers. In anréffolessen the exposure, the NetBSD
packages team maintains a database of known-exploits kmges which have at one time been
included in pkgsrc. The database can be downloaded autmatigtand a security audit of all packages
installed on a system can take place. To do this, instakd¢herity/audit-packages package. It has
two components:

1. download-vulnerability-list, an easy way to download a list of the security vulnerabaiti
information. This list is kept up to date by the NetBSD setyusificer and the NetBSD packages
team, and is distributed from the NetBSD ftp server:

ftp://ftp.NetBSD.org/pub/NetBSD/packages/distfilégfprulnerabilities

2. audit-packages an easy way to audit the current machine, checking eacteralbility which is
known. If a vulnerable package is installed, it will be shdwnoutput to stdout, including a
description of the type of vulnerability, and a URL contaigimore information.

Use of thesecurity/audit-packages package is strongly recommended! After “audit-packages” i
installed, please read the package’s message, which yogetdy runningpokg_i nfo -D
audi t - packages.

If this package is installed, pkgsrc builds will use it to foem a security check before building any
package. SeBection 5.Zor ways to control this check.

35

Il. The pkgsrc developer’s guide

Chapter 8.
Package components - files,
directories and contents

Whenever you're preparing a package, there are a numbeesffivolved which are described in the
following sections.

8.1. Mukefile

Building, installation and creation of a binary packagealteontrolled by the packagelgakefile
TheMakefile describes various things about a package, for example frioemento get it, how to
configure, build, and install it.

A packageviakefile contains several sections that describe the package.

In the first section there are the following variables, wisblould appear exactly in the order given here.

- DISTNAMEs the basename of the distribution file to be downloaded fitepackage’s website.

- PKGNAMIS the name of the package, as used by pkgsrc. You only needvalp it if it differs from
DISTNAME Usually it is the directory name together with the versiomier. It must match the
regular expressiof{A-Za-z0-9][A-Za-z0-9-_.+] *$, that is, it starts with a letter or digit, and
contains only letters, digits, dashes, underscores, dotplas signs.

« CATEGORIESS a list of categories which the package fits in. You can ce@wy of the top-level
directories of pkgsrc for it.

Currently the following values are available ' ATEGORIESIf more than one is used, they need to
be separated by spaces:

archivers Cross geography meta-pkgs security
audio databases graphics misc shells
benchmarks devel ham multimedia sysutils
biology editors inputmethod net textproc
cad emulators lang news time
chat finance mail parallel wm
comms fonts math pkgtools wWww
converters games mbone print x11

- MASTER_SITESHs a list of URLs where the distribution files can be downlahdeach URL must end
with a slash.

TheMASTER_SITESmay make use of the following predefined sites:

${MASTER_SITE_APACHE}
${MASTER_SITE_BACKUP}
${MASTER_SITE_CYGWIN}

37

Chapter 8. Package components - files, directories and otsite

${MASTER_SITE_DEBIAN}
${MASTER_SITE_FREEBSD}
${MASTER_SITE_FREEBSD_LOCAL}
${MASTER_SITE_GNOME}
${MASTER_SITE_GNU}
${MASTER_SITE_GNUSTEP}
${MASTER_SITE_IFARCHIVE}
${MASTER_SITE_MOZILLA}
${MASTER_SITE_OPENOFFICE}
${MASTER_SITE_PERL_CPAN}
${MASTER_SITE_R_CRAN}
${MASTER_SITE_SOURCEFORGE}
${MASTER_SITE_SUNSITE}
${MASTER_SITE_SUSE}
${MASTER_SITE_TEX_CTAN}
${MASTER_SITE_XCONTRIB}
${MASTER_SITE_XEMACS}

If one of these predefined sites is chosen, you may want tafg@esubdirectory of that site. Since
these macros may expand to more than one actual sitenystuse the following construct to specify
a subdirectory:

${MASTER_SITE_GNU:=subdirectory/name/}
${MASTER_SITE_SOURCEFORGE:=project_name/}

Note the trailing slash after the subdirectory name.

If the package has multipRISTFILES or multiple PATCHFILESfrom different sites, SeSITES_foo
to a list of URIs where file “foo” may be found. “foo” includele suffix, e.g.:

DISTFILES= ${DISTNAME}${EXTRACT_SUFX}

DISTFILES+= foo-file.tar.gz

SITES_foo-file.tar.gz= \
http://www.somewhere.com/somehow/ \
http://www.somewhereelse.com/mirror/somehow/

- DISTFILES : Name(s) of archive file(s) containing distribution. Theaisdt is
${DISTNAME}${EXTRACT_SUFX}. Should only be set if you have more than one distfile.

Note that the normal default setting RFSTFILES must be made explicit if you want to add to it
(rather than replace it), as you usually would.

« EXTRACT_SUFXSuffix of the distribution file, will be appended mSTNAME Defaults to.tar.gz

The second section contains information about separateiylbaded patches, if any.

- PATCHFILES: Name(s) of additional files that contain distribution pa&gshThere is no default. pkgsrc
will look for them atPATCH_SITES They will automatically be uncompressed before patcHitige
names end withgz or.Z .

« PATCH_SITES Primary location(s) for distribution patch files (Se&TCHFILES below) if not found
locally.

The third section contains the following variables.

38

Chapter 8. Package components - files, directories and otsite

+ MAINTAINERIis the email address of the person who feels responsiblaifopackage, and who is
most likely to look at problems or questions regarding tlsiskage which have been reported with
send-pr(1). Other developers should contacMENTAINER before making major changes to the
package. When packaging a new programM&ENTAINERto yourself. If you really can’t maintain
the package for future updates, set it toch-pkg@NetBSD.org >.

« HOMEPAGHE a URL where users can find more information about the pazkag

- COMMENIB a one-line description of the package (should not incthégpackage name).

Other variables that affect the build:

« WRKSRCThe directory where the interesting distribution filestod package are found. The default is
${WRKDIR}/${DISTNAME} , which works for most packages.

If a package doesn't create a subdirectory for itself (mdd$tGoftware does, for instance), but
extracts itself in the current directory, you should W&KSRC= ${WRKDIR}

If a package doesn't create a subdirectory with the nanm®fNAMEbut some different name, set
WRKSR® point to the proper name B{WRKDIR}, for exampleWNRKSRC=
${WRKDIR}/${DISTNAME}unix .Seelang/tcl andx11l/tk for other examples.

The name of the working directory created by pkgsrc is takemftheWRKDIR_BASENAMEriable.
By default, its value isvork . If you want to use the same pkgsrc tree for building difféténds of
binary packages, you can change the variable accordinguongeds. Two other variables handle
common cases of settiyRKDIR_BASENAMAdividually. If OBJHOSTNAMIS defined in
letc/mk.conf , the first component of the host’s name is attached to thetdinename. If
OBJMACHINESs defined, the platform name is attached, which might loldwiork.i386 or
work.sparc

Please pay attention to the following gotchas:

- Add MANCOMPRESSHDnan pages are installed in compressed form by the packagesomment in
bsd.pkg.mk

- Replacgusr/local with “${PREFIX}" in all files (see patches, below).
- If the package installs any info files, section 16.5.7

8.2.distinfo

Thedistinfo file contains the message digest, or checksum, of eachelistfidded for the package.
This ensures that the distfiles retrieved from the Interagemot been corrupted during transfer or
altered by a malign force to introduce a security hole. Dugt@nt rumor about weaknesses of digest
algorithms, all distfiles are protected using both SHA1 aMDR 60 message digests, as well as the file
size.

Thedistinfo file also contains the checksums for all the patches foundepdtches directory (see
Section 8.3.

39

Chapter 8. Package components - files, directories and otsite

To regenerate thdistinfo file, use thanake makedistinfoor make mdi command.

Some packages have different sets of distfiles dependintgeoplatform, for exampleww/navigator).
These are kept in the sardistinfo file and care should be taken when upgrading such a package to
ensure distfile information is not lost.

8.3. patches/*

This directory contains files that are used by the patch(neand to modify the sources as distributed
in the distribution file into a form that will compile and rueigectly on NetBSD. The files are applied
successively in alphabetic order (as returned by a sheithes/patch-*" glob expansion), gatch-aa

is applied befor@atch-ab , etc.

Thepatch- « files should be imiff -bu format, and apply without a fuzz to avoid problems. (To force
patches to apply with fuzz you can $A&TCH_FUZZ_FACTOR=-Fp Furthermore, do not put changes for
more than one file into a single patch file, as this will makerfetmodifications more difficult.

Similar, a file should be patched at most once, not severaktiny several different patches. If a file
needs several patches, they should be combined into one file.

One important thing to mention is to pay attention that no RQ$Sget stored in the patch files, as these
will cause problems when later checked into the NetBSD C¥8&.tse th@kgdiff from the
pkgtools/pkgdiff package to avoid these problems.

For even more automation, we recommend usikgpatchesfrom the same package to make a whole set
of patches. You just have to backup files before you edit theefitehame.orig , .9. withcp -p

filename filename.origor, easier, by usingkgvi again from the same package. If you upgrade a
package this way, you can easily compare the new set of matdtiethe previously existing one with
patchdiff.

When you have finished a package, remember to generate ttlescimes for the patch files by using the
make makepatchsumcommand, se8ection 8.2

When adding a patch that corrects a problem in the distfitgrahan e.g. enforcing pkgsrc’s view of
where man pages should go), send the patch as a bug repagtrtmthtainer. This benefits non-pkgsrc
users of the package, and usually enables removing the jpdificture version.

Patch files that are distributed by the author or other mizeta can be listed ifPATCHFILES.

If it is desired to store any patches that should not be cotachihto pkgsrc, they can be kept outside the
pkgsrc tree in théLOCALPATCHESlirectory. The directory tree there is expected to have dinges
“category/package” structure as pkgsrc, and patches aexted to be stored inside these dirs (also
known assLOCALPATCHES/$PKGPATHFor example, if you want to keep a private patch for
pkgsrc/graphics/png , keep it INSLOCALPATCHES/graphics/png/mypatch . All files in the

named directory are expected to be patch files,thag are applied after pkgsrc patches are applied

8.4. Other mandatory files

DESCR

A multi-line description of the piece of software. This skibinclude any credits where they are

40

Chapter 8. Package components - files, directories and otsite

due. Please bear in mind that others do not share your sehsenaiur (or spelling idiosyncrasies),
and that others will read everything that you write here.

PLIST

This file governs the files that are installed on your systdhthe binaries, manual pages, etc.
There are other directives which may be entered in this lepntrol the creation and deletion of
directories, and the location of inserted files. 8&apter 1Gor more information.

8.5. Optional files

INSTALL

This shell script is invoked twice by pkg_add(1). First tiafeer package extraction and before files
are moved in place, the second time after the files to instalireoved in place. This can be used to
do any custom procedures not possible with @exec commarrds3m . See pkg_add(1) and
pkg_create(1) for more information.

DEINSTALL

This script is executed before and after any files are remadvithis script’s responsibility to
clean up any additional messy details around the packagsalliation, since all pkg_delete knows
is how to delete the files created in the original distributiBee pkg_delete(1) and pkg_create(1)
for more information.

MESSAGE

This file is displayed after installation of the package. fukfor things like legal notices on
almost-free software and hints for updating config filesraftstalling modules for apache, PHP etc.
Please note that you can modify variables in it easily bygiIsiESSAGE_SUBSN the package’s
Makefile

MESSAGE_SUBST+= SOMEVAR="somevalue"
replaces "${SOMEVAR}" with “somevalue” iMESSAGE

8.6. wor kx

When you typemake, the distribution files are unpacked into the directory deddyWRKDIR It can be
removed by runningnake clean Besides the sources, this directory is also used to keépugar
timestamp files. The directory gatsmoved completelyn clean. The default i5{. CURDIR}/work or
${.CURDIR}/work.${MACHINE_ARCH} if OBJMACHINES set.

8.7.files/*

If you have any files that you wish to be placed in the package i configuration or building, you

could place these files here and use a “${CP}" command in the-gonfigure” target to achieve this.
Alternatively, you could simply diff the file againstev/null ~ and use the patch mechanism to manage
the creation of this file.

41

Chapter 9.
Programming in Makefil es

Pkgsrc consists of manyakefile fragments, each of which forms a well-defined part of the pkgs
system. Using the make(1) system as a programming langoagéebig system like pkgsrc requires
some discipline to keep the code correct and understandable

The basic ingredients fonakefile programming are variables (which are actually macros) aed s
commands. Among these shell commands may even be more coomas like awk(1) programs. To
make sure that every shell command runs as intended it iss&geto quote all variables correctly when
they are used.

This chapter describes some patterns, that appear queteioftiakefile s, including the pitfalls that
come along with them.

9.1. Makefi | e variables

Makefile variables contain strings that can be processed using #effierators “=", “+=", “?=", “:=",
and “!1=", which are described in the make(1) man page.

When a variable’s value is parsed frorMakefile , the hash character “#” and the backslash character
“\” are handled specially. If a backslash is followed by a hiee; any whitespace immediately in front of
the backslash, the backslash, the newline, and any whitespanediately behind the newline are
replaced with a single space. A backspace character andraediately following hash character are
replaced with a single hash character. Otherwise, the lmstkis passed as is. In a variable assignment,
any hash character that is not preceded by a backslashatamsment that continues upto the end of the
logical line.

Note: Because of this parsing algorithm the only way to create @bk consisting of a single backslash
is using the “1=" operator, for examplBACKSLASH!=echo "\\"

So far for defining variables. The other thing you can do wéhables is evaluating them. A variable is
evaluated when it is part of the right side of the “:=" or the™bperator, or directly before executing a
shell command which the variable is part of. In all other sasgake(1) performs lazy evaluation, that is,
variables are not evaluated until there’s no other way. Thedifiers” mentioned in the man page also
evaluate the variable.

Some of the modifiers split the string into words and then afgeon the words, others operate on the
string as a whole. When a string is split into words, it istspdi you would expect it from sh(1).

No rule without exception—thdor loop does not follow the shell quoting rules but splits atusates
of whitespace.

There are several types of variables that should be handfedeatly. Strings and two types of lists.

« Stringscan contain arbitrary characters. Nevertheless, you dhestrict yourself to only using
printable characters. Examples &REFIX andCOMMENT

42

Chapter 9. Programming ivakef i | es

- Internal listsare lists that are never exported to any shell command. Elezinents are separated by
whitespace. Therefore, the elements themselves canneemalvedded whitespace. Any other
characters are allowed. Internal lists can be usefbimloops. Examples areEPEND&Nd
BUILD_DEPENDS

- External listsare lists that may be exported to a shell command. Their elesan contain any
characters, including whitespace. That's why they canaatded infor loops. Examples are
DISTFILES andMASTER_SITES

9.1.1. Naming conventions

- All variable names starting with an underscore are reseiaease by the pkgsrc infrastructure. They
shall not be used by packalyrkefile s.

- In .for loops you should use lowercase variable names for theitareariables.

« All list variables should have a “plural” name, eRKG_OPTIONSr DISTFILES .

9.2. Code snippets

This section presents you with some code snippets you shiseldh your own code. If you don't find
anything appropriate here, you should test your code andt &ede.

9.2.1. Adding things to a list

STRING= foo * bar ‘date’

INT_LIST= # empty

ANOTHER_INT_LIST= apache-[0-9] =*:.././www/apache
EXT_LIST= # empty

ANOTHER_EXT_LIST= a=b c=d

INT_LIST+= ${STRING} #1

INT_LIST+= ${ANOTHER_INT_LIST} # 2

EXT_LIST+= ${STRING:Q} # 3
EXT_LIST+= ${ANOTHER_EXT_LIST} # 4

When you add a string to an external list (example 3), it magjioted. In all other cases, you must not
add a quoting level. You must not merge internal and extdistal unless you are sure that all entries are
correctly interpreted in both lists.

9.2.2. Converting an internal list into an external list

EXT_LIST= # empty
for i in ${INT_LIST}
EXT_LIST+= ${i: Q™
.endfor

43

Chapter 9. Programming ivakef i | es

This code converts the internal listT_LIST into the external iSEXT_LIST . As the elements of an
internal list are unquoted they must be quoted here. Thendas appending" is explained below.

9.2.3. Passing variables to a shell command

STRING= foo bar < > = ‘date’ $$HOME ' "
EXT_LIST= string=${STRING:Q} x=second\ item
all:

echo ${STRING} # 1

echo "${STRING}" # 2

echo "${STRING:Q}" # 3

echo ${STRING:Q} # 4

echo x${STRING:Q} | sed 1s,, # 5
env ${EXT_LIST} /bin/sh -c ’echo "$$string"; echo "$$x"

Example 1 leads to a syntax error in the shell, as the chasaate just copied.

Example 2 leads to a syntax error too, and if you leave outasie'Icharacter fror8{STRING} , date(1)
will be executed. ThgHOMEshell variable would be evaluated, too.

Example 3 outputs each space character preceded by a Isci@aot), depending on the
implementation of the echo(1) command.

Example 4 handles correctly every string that does notwitiita dash. In that case, the result depends
on the implementation of the echo(1) command. As long as gowciarantee that your input does not
start with a dash, this form is appropriate.

Example 5 handles even the case of a leading dash correctly.

TheEXT_LIST does not need to be quoted because the quoting has alreadgidoee=when adding
elements to the list.

As internal lists shall not be passed to the shell, there sxample for it.

9.2.4. Quoting guideline

There are many possible sources of wrongly quoted variablés section lists some of the commonly
known ones.

« Whenever you use the value of a list, think about what hapfzelesding or trailing whitespace. If the
list is a well-formed shell expression, you can apply:#e modifier to strip leading and trailing
whitespace from each word. Tk operator first splits its argument according to the rulesief t
shell, and then creates a new list consisting of all wordsrttedch the shell glob expressienthat is:
all. One class of situations where this is needed is whemadalivariable likeCPPFLAGS0
CONFIGURE_ARGSf the configure script invokes other configure scriptstrips the leading and
trailing whitespace from the variable and then passes itemther configure scripts. But these
configure scripts expect the (chil@PPFLAGSsariable to be the same as the pal@RPFLAGSThat's
why we better pass thePPFLAGS/alue properly trimmed. And here is how we do it:

CPPFLAGS= # empty
CPPFLAGS+= -Wundef -DPREFIX=\"${PREFIX:Q}\"

44

Chapter 9. Programming ivakef i | es
CPPFLAGS+= ${MY_CPPFLAGS}
CONFIGURE_ARGS+= CPPFLAGS=${CPPFLAGS:K}

all:
echo x${CPPFLAGS:Q}x # leading and trailing whitespace
echo x${CONFIGURE_ARGS}x # properly trimmed

« The example above contains one bug: ${feREFIX} is a properly quoted shell expression, but there
is the C compiler after it, which also expects a properly gdattring (this time in C syntax). The
version above is therefore only correc${PREFIX} does not have embedded backslashes or double
quotes. If you want to allow these, you have to add anotherlaf/quoting to each variable that is
used as a C string literal. You cannot use:tQeoperator for it, as this operator only works for the
shell.

- Whenever a variable can be empty, tQeoperator can have surprising results. Here are two
completely different cases which can be solved with the daicie
EMPTY= # empty
empty_test:
for i in a ${EMPTY:Q} c; do \
echo "$$i"; \
done

for_test:

for i in a:\ a:test.txt
echo ${i:Q}
echo "foo"

.endfor

The first example will only print two of the three lines we midifave expected. This is because
${EMPTY:Q} expands to the empty string, which the shell cannot see. Tikaround is to write
${EMPTY:Q}"™ . This pattern can be often found S EST} -z ${VAR:Q} or as${TEST} -f
${FNAME:Q} (both of these are wrong).

The second example will only print three lines instead of fae first line looks likea:\ echo

foo . This is because the backslash of the value is interpreted as a line-continuation by make(1),
which makes the second line the arguments of the echo(1) emhifinom the first line. To avoid this,
write ${i:Q}™

9.2.5. Workaround for a bug in BSD Make

The pkgsrc bmake program does not handle the following assgt correctly. In caseothervar_
contains a “-” character, one of the closing braces is inetLid ${VAR} after this code executes.

VAR:= ${VAR:N${ othervar_:C/-//}}

For a more complex code snippet and a workaround, see thagerelgress/make-quoting ,
testcasaugl.

45

Chapter 10.
PLIST issues

ThePLIST file contains a package’s “packing list”, i.e. a list of filést belong to the package (relative
to the${PREFIX} directory it's been installed in) plus some additionaletaénts - see the
pkg_create(1) man page for a full list. This chapter adér®seme issues that need attention when
dealing with thePLIST file (or files, see below!).

10.1. RCS ID

Be sure to add a RCS ID line as the first thing in 80yST file you write:

@comment $NetBSD$

10.2. Semi-automatic PLI ST generation

You can use thenake print-PLIST command to output a PLIST that matches any new files since the
package was extracted. Sgection 14.16or more information on this target.

10.3. Tweaking output of make print-PLIST

If you have used any of the *-dirs packages, as explain&eution 10.8you may have noticed that
make print-PLIST outputs a set ofcommens instead of rea@dirrm lines. You can also do this for
specific directories and files, so that the results of thatroand are very close to reality. This help#ot
during the update of packages.

ThePRINT_PLIST_AWKUvariable takes a set of AWK patterns and actions that aretadidter the output
of print-PLIST. You carappendany chunk of AWK scripting you like to it, but be careful witlhugting.

For example, to get all files inside thiedata/foo directory removed from the resulting PLIST:
PRINT_PLIST_AWK+= /NibdataVifoo/ { next; }
And to get all the@dirrm lines referring to a specific (shared) directory converte@tommens:

PRINT_PLIST_AWK+= /"@dirrm shareVspecific/ { print "@co mment " $$0; next; }

10.4. Variable substitution in PLIST

A number of variables are substituted automatically in Ald®/hen a package is installed on a system.
This includes the following variables:

46

Chapter 10. PLIST issues

${MACHINE_ARCH} ${MACHINE_GNU_ARCH}

Some packages like emacs and perl embed information abacit wichitecture they were built on
into the pathnames where they install their files. To hartdkedase, PLIST will be preprocessed
before actually used, and the symb${MACHINE_ARCHY will be replaced by whatiname -p
gives. The same is done if the strifMACHINE_GNU_ARCHis embedded in PLIST somewhere -
use this on packages that have GNU autoconf-created coaféguipts.

Legacy note: There used to be a symbol “$ARCH that was replaced by the output of uname
-m, but that’s no longer supported and has been removed.

${OPSYS}, ${LOWER_OPSYS}${OS_VERSION}

Some packages want to embed the OS name and version into stimse o do this, use these
variables in thePLIST :

« ${OPSYS} - output of ‘uname -3
+ ${LOWER_OPSYS} lowercase common name (eg. “solaris”)

+ ${OS_VERSION} - “uname -r’

${PKGLOCALEDIR}

Packages that install locale files should list them in theHLas
“${PKGLOCALEDIR}/locale/de/LC_MESSAGES]..."” instead o
“share/locale/de/LC_MESSAGES/...". This properly hasdihe fact that different operating
systems expect locale files to be eithesfiare orlib by default.

For a complete list of values which are replaced by defalégsge look irbsd.pkg.mk (and search for
PLIST_SUBS).

If you want to change other variables not listed above, youadhd variables and their expansions to this
variable in the following way, similar tMESSAGE_SUBSEBeeSection 8.5

PLIST _SUBST+= SOMEVAR="somevalue"

This replaces all occurrences of “${SOMEVAR}" in the PLISTittv“somevalue”.

10.5. Man page compression

Man pages should be installed in compressed fomriNZs set (inbsd.own.mk), and uncompressed
otherwise. To handle this in tH&LIST file, the suffix “.gz” is appended/removed automaticallyriwan
pages according tdANZandMANCOMPRESSEBIng set or not, see above for details. This modification
of thePLIST file is done on a copy of it, N\RLIST itself.

a7

Chapter 10. PLIST issues

10.6. Changing PLIST source with PLI ST_SRC

To use one or more files as source for Bi¢ST used in generating the binary package, set the variable
PLIST_SRC to the names of that file(s). The files are later concatenatied wat(1), and order of things
is important.

10.7. Platform-specific and differing PLISTs

Some packages decide to install a different set of files bas¢lde operating system being used. These
differences can be automatically handled by using theviotig files:

« PLIST.common

+ PLIST.${OPSYS}

« PLIST.${MACHINE_ARCH}

+ PLIST.${OPSYS}-${MACHINE_ARCH}

« PLIST.common_end

10.8. Sharing directories between packages

A “shared directory” is a directory where multiple (and uated) packages install files. These
directories are problematic because you have to add specia in the PLIST to conditionally remove
them, or have some centralized package handle them.

Within pkgsrc, you'll find both approaches. If a directorystsared by a few unrelated packages, it’s
often not worth to add an extra package to remove it. Theegfore simply does:

@unexec ${RMDIR} %D/path/to/shared/directory 2>/dev/nu]| ${TRUE}

in the PLISTs of all affected packages, instead of the reg@alirrm" line.

However, if the directory is shared across many packagesdifferent solutions are available:

1. If the packages have a common dependency, the directodyeceemoved in that. For example, see
textproc/scrollkeeper , which removes the shared directehare/omf

2. If the packages using the directory are not related athadl(have no common dependencies), a
*-dirs package is used.

From now on, we'll discuss the second solution. To get an af¢le *-dirs packages available, issue:

% cd .../pkgsrc
%Ils -d =/ *-dirs

Their use from other packages is very simple. UsE_DIRSvariable takes a list of package names
(without the “-dirs” part) together with the required vensinumber (always pick the latest one when
writing new packages).

For example, if a package installs files undiedire/applications , it should have the following line
in it:

48

Chapter 10. PLIST issues
USE_DIRS+= xdg-1.1

After regenerating the PLIST usimgake print-PLIST , you should get the right (commented out) lines.

Note that even if your package is usifig§11BASE, it must not depend on the *-x11-dirs packages. Just
specify the name without that part and pkgsrc (in particut@rdirs.mk) will take care of it.

49

Chapter 11.
Buildlink methodology

Buildlink is a framework in pkgsrc that controls what heagand libraries are seen by a package’s
configure and build processes. This is implemented in a tejp [3tocess:

1. Symlink headers and libraries for dependenciesButtt DLINK_DIR , which by defaultis a
subdirectory ofV\RKDIR

2. Create wrapper scripts that are used in place of the naomapiler tools that translate
-I${LOCALBASEY}/include and-L${LOCALBASE}/lib into references tBUILDLINK_DIR . The
wrapper scripts also make native compiler on some operagisigms look like GCC, so that
packages that expect GCC won't require modifications tadbwith those native compilers.

This normalizes the environment in which a package is baithat the package may be built

consistently despite what other software may be instaltéshse note that the normal system header and
library paths, e.glusr/include ,lusrllib , etc., are always searched -- buildlink3 is designed to
insulate the package build from non-system-supplied softw

11.1. Converting packages to use buildlink3

The process of converting packages to use the buildlink@dweork (“bl3ifying”) is fairly
straightforward. The things to keep in mind are:

1. Ensure that the build always calls the wrapper scripteatsof the actual toolchain. Some packages
are tricky, and the only way to know for sure is the chéplRKDIR}/.work.log to see if the
wrappers are being invoked.

2. Don't overridePREFIX from within the package Makefile, e.g. Java VMs, standaldredis etc.,

because the code to symlink files irfBUILDLINK_DIR} looks for files relative to “pkg_info -qp
pkgnane”.

3. Remember thainly the buildlink3.mk files that you list in a package’s Makefile are added as
dependencies for that package.

If a dependency on a particular package is required fortitaties and headers, then we replace:

DEPENDS+= foo>=1.1.0:../../category/foo
with
.include "../../category/foo/buildlink3.mk"

The buildlink3.mk files usually define the required depemies If you need a newer version of the
dependency when using buildlink3.mk files, then you can defiim your Makefile; for example:

50

Chapter 11. Buildlink methodology

BUILDLINK_DEPENDS.foo+= fo0>=1.1.0
.include "../../category/foo/buildlink3.mk"

There are severabildlink3.mk files inpkgsrc/mk that handle special package issues:

« bdb.buildlink3.mk chooses either the native or a pkgsrc Berkeley DB implentiemtaased on
the values 0BDB_ACCEPTERBNdBDB_DEFAULT

« curses.buildlink3.mk . If the system comes with neither Curses nor NCurses, thisake care
to install thedevel/ncurses package.

« krb5.buildlink3.mk uses the value ifRB5_ACCEPTEIID choose between adding a dependency
on Heimdal or MIT-krb5 for packages that require a Kerberonfementation.

« motif.buildlink3.mk checks for a system-provided Motif installation or adds peshelency on
x11/lesstif or x11/openmotif

« ossaudio.buildlink3.mk defines several variables that may be used by packages éhtiiteus
Open Sound System (OSS) API.

+ pgsql.buildlink3.mk will accept either Postgres 7.3 or 7.4, whichever is fourstiilled. See the
file for more information.

- pthread.buildlink3.mk uses the value #THREAD_OPTand checks for native pthreads or adds
a dependency odevel/pth as needed.

« xaw.buildlink3.mk uses the value ofAW_TYPEoO choose a particular Athena widgets library.

The comments in thogauildlink3.mk files provide a more complete description of how to use them
properly.

11.2. Writing bui | dl i nk3. nk files

A package’suildlink3.mk file is included by Makefiles to indicate the need to compilé kmk
against header files and libraries provided by the packageildink3.mk file should always
provide enough information to add the correct type of depany relationship and include any other
buildlink3.mk files that it needs to find headers and libraries that it neetlgn.

To generate an initidduildlink3.mk file for further editing, Rene Hexel's
pkgtools/createbuildlink package is highly recommended. For most packages, thevialio
command will generate a good starting pointifaidlink3.mk files:

% cd pkgsrc/ category/ pkgdir

% creat ebui | dl i nk >bui | dl i nk3. nk

11.2.1. Anatomy of a buildlink3.mk file

The following real-life exampleéuildlink3.mk is taken frompkgsrc/graphics/tiff

$NetBSD: buildlink3.mk,v 1.7 2004/03/18 09:12:12 jlam Ex p$

BUILDLINK_DEPTH:= ${BUILDLINK_DEPTH}+
TIFF_BUILDLINK3_MK:= ${TIFF_BUILDLINK3_MK}+

51

Chapter 11. Buildlink methodology

Jif lempty(BUILDLINK_DEPTH:M+)

BUILDLINK_DEPENDS+= tiff

.endif

BUILDLINK_PACKAGES:= ${BUILDLINK_PACKAGES:NItiff}
BUILDLINK_PACKAGES+= tiff

Jif lempty(TIFF_BUILDLINK3_MK:M+)
BUILDLINK_DEPENDS tiff+= tiff>=3.6.1
BUILDLINK_PKGSRCDIR.tiff?= .I..Igraphicsttiff
.endif # TIFF_BUILDLINK3_MK

.include "../../devel/zlib/buildlink3.mKk"
.include "../../graphics/jpeg/buildlink3.mKk"

BUILDLINK_DEPTH:= ${BUILDLINK_DEPTH:S/+$//}

The header and footer manipul@®eILDLINK_DEPTH, which is common across alildlink3.mk
files and is used to track at what depth we are includinigllink3.mk files.

The first section controls if the dependencypy is addedBUILDLINK_DEPENDSIs the global list of
packages for which dependencies are added by buildlink3.

The second section advises pkgsrc thatdhillink3.mk file for pkg has been included at some
point.BUILDLINK_PACKAGESS the global list of packages for whidildlink3.mk files have been
included. It mustlwaysbe appended to within uildlink3.mk file.

The third section is protected from multiple inclusion amdtols how the dependency pRg is added.
Several important variables are set in the section:

- BUILDLINK_DEPENDS.pkg is the actual dependency recorded in the installed packiaigeshould
always be set using=to ensure that we're appending to any pre-existing list &ies This variable
should be set to the first version of the package that had sheli@ange in the major number of a
shared library or that had a major API change.

« BUILDLINK_PKGSRCDIR.pkg is the location of thekg pkgsrc directory.

« BUILDLINK_DEPMETHODpkg (not shown above) controls whether we B&#LD_DEPENDSOr
DEPENDSo add the dependency @kg. The build dependency is selected by setting
BUILDLINK_DEPMETHODpkg to “build”. By default, the full dependency is used.

« BUILDLINK_INCDIRS. pkg andBUILDLINK_LIBDIRS. pkg (hot shown above) are lists of
subdirectories o${BUILDLINK_PREFIX. pkg} to add to the header and library search paths. These
default to “include” and “lib” respectively.

« BUILDLINK_CPPFLAGS.pkg (not shown above) is the list of preprocessor flags to aditPPFLAGS
which are passed on to the configure and build phases. Theptién should be avoided and instead
be handled usinBUILDLINK_INCDIRS. pkg as above.

The following variables are all optionally defined withinglsecond section (protected against multiple
inclusion) and control which package files are symlinked $§BUILDLINK_DIR} and how their names
are transformed during the symlinking:

52

Chapter 11. Buildlink methodology

« BUILDLINK_FILES. pkg (not shown above) is a shell glob pattern relative to
${BUILDLINK_PREFIX. pkg} to be symlinked int&{BUILDLINK_DIR} ,e.g.include/ *.h.

+ BUILDLINK_FILES_CMD. pkg (not shown above) is a shell pipeline that outputs to stddist af files
relative to${BUILDLINK_PREFIX. pkg}. The resulting files are to be symlinked into
${BUILDLINK_DIR} . By default, this takes theCONTENT®f apkg and filters it through
${BUILDLINK_CONTENTS_FILTER. pkg}.

« BUILDLINK_CONTENTS_FILTER.pkg (not shown above) is a filter command that filte SONTENTS
input into a list of files relative t&{BUILDLINK_PREFIX. pkg} on stdout. By default for overwrite
packagesBUILDLINK_CONTENTS_FILTER.pkg outputs the contents of theclude andlib
directories in the packageCONTENTSand for pkgviews packages, it outputs any libtool archimes
lib directories.

« BUILDLINK_TRANSFORMpkg (not shown above) is a list of sed arguments used to trangfoem
name of the source filename into a destination filename;@:g|/curses.h|/ncurses.h|g"

The last section includes abyildlink3.mk needed fopkg’s library dependencies. Including these
buildlink3.mk files means that the headers and libraries for these depeiedeme also symlinked
into ${BUILDLINK_DIR} whenever thepkg buildlink3.mk file is included.

11.2.2. Updating BUI LDLI NK_DEPENDS. pkg in bui | dl i nk3. nk files

There are two situations that require increasing the degrenydisted inBUILDLINK_DEPENDS .pkg
after a package update:

1. if the sonames (major number of the library version) of msyalled shared libraries change.
2. if the API or interface to the header files change.

In these case®BUILDLINK_DEPENDS.pkg should be adjusted to require at least the new package
version. In some cases, the packages that depend on thisensiarvmay need theRKGREVISIONs
increased and, if they hawaildlink3.mk files, theirBUILDLINK_DEPENDS.pkg adjusted, too. This
is needed so that binary packages made using it will reqo@edrrect package dependency and not
settle for an older one which will not contain the necessheyad libraries.

Please take careful consideration before adjustiog DLINK_DEPENDS.pkg as we don’t want to cause
unneeded package deletions and rebuilds. In many casesensions of packages work just fine with
older dependencies. S8ection 16.1.4or more information about dependencies on other packages,
including theBUILDLINK_RECOMMENDEIMdRECOMMENDEEfinitions.

11.3. Writing bui | ti n. nk files

Some packages in pkgsrc install headers and libraries diratide with headers and libraries present in
the base system. Aside fronbaildlink3.mk file, these packages should also includwigtin.mk

file that includes the necessary checks to decide whethag ths¢ built-in software or the pkgsrc
software is appropriate.

The only requirements of a builtin.mk file fpkg are:

53

Chapter 11. Buildlink methodology

1. It should seUSE_BUILTIN. pkg to either “yes” or “no” after it is included.

2. It shouldnot override anyUSE_BUILTIN. pkg which is already set before ttailtin.mk fileis
included.

3. It should be written to allow multiple inclusion. Thisusryimportant and takes careful attention to
Makefile coding.

11.3.1. Anatomy of a bui I tin. nk file

The following is the recommended template for builtin.m&sil

.if !defined(IS_BUILTIN.foo)

#
IS_BUILTIN.foo is set to "yes" or "no" depending on whether "foo"
genuinely exists in the system or not.
#
IS_BUILTIN.foo?= no
BUILTIN_PKG.foo should be set here if "foo" is built-in and its package
version can be determined.
#
if lempty(IS_BUILTIN.foo:M[yY][eE][sS])
BUILTIN_PKG.foo?= foo-1.0

endif
.endif # IS_BUILTIN.foo

.if !defined(USE_BUILTIN.foo)
USE_BUILTIN.foo?= ${IS_BUILTIN.foo}
if defined(BUILTIN_PKG.foo)
for _depend_ in ${BUILDLINK_DEPENDS.foo}
. if lempty(USE_BUILTIN.foo:M[yY][eE][sS])
USE_BUILTIN.foo!= \

if ${PKG_ADMIN} pmatch '${ depend_} ${BUILTIN_PKG.foo} ; then \
${ECHO} "yes"; \
else \
${ECHO} "no"; \
fi
endif
endfor
endif

.endif # USE_BUILTIN.foo

CHECK_BUILTIN.foo?= no

.if lempty(CHECK_BUILTIN.foo:M[nN][0O])

#

Here we place code that depends on whether USE_BUILTIN.foo is set to
"yes" or "no".

#

.endif # CHECK_BUILTIN.foo

The first section sets_BUILTIN. pkg depending on ipkg really exists in the base system. This should
not be a base system software with similar functionalitgikg; it should only be “yes” if the actual

54

Chapter 11. Buildlink methodology

package is included as part of the base system. This vaitabtdy used internally within the
builtin.mk file.

The second section sB&JILTIN_PKG. pkg to the version opkg in the base system if it exists (if
IS_BUILTIN. pkg is “yes”). This variable is only used internally within theiltin.mk file.

The third section setdSE_BUILTIN. pkg and isrequiredin all builtin.mk files. The code in this
section must make the determination whether the built-itwsoe is adequate to satisfy the
dependencies listed BUILDLINK_DEPENDS.pkg. This is typically done by comparing
BUILTIN_PKG. pkg against each of the dependencieBULDLINK_DEPENDS.pkg.

USE_BUILTIN. pkg mustbe set to the correct value by the end of iblétin.mk file. Note that
USE_BUILTIN. pkg may be “yes” even ifS_BUILTIN. pkg is “n0” because we may make the
determination that the built-in version of the softwareiisiar enough to be used as a replacement.

The last section is guarded WHECK_BUILTIN. pkg, and includes code that uses the value of
USE_BUILTIN. pkg set in the previous section. This typically includes, eadding additional
dependency restrictions and listing additional files to ykrinto ${BUILDLINK_DIR} (via
BUILDLINK_FILES. pkg).

11.3.2. Global preferences for native or pkgsrc software

When building packages, it's possible to choose whethegtta global preference for using either the
built-in (native) version or the pkgsrc version of softwésesatisfy a dependency. This is controlled by
settingPREFER_PKGSRandPREFER_NATIVE These variables take values of either “yes”, “no”, or a
list of packagesPREFER_PKGSRtells pkgsrc to use the pkgsrc versions of software, while
PREFER_NATIVEells pkgsrc to use the built-in versions. Preferences aterthined by the most

specific instance of the package in eitPREFER_PKGSRGr PREFER_NATIVE If a package is specified
in neither or in both variables, thédREFER_PKGSRItas precedence oveREFER_NATIVE For

example, to require using pkgsrc versions of software fidsglthe most basic bits on a NetBSD system,
you can set:

PREFER_PKGSRC= yes
PREFER_NATIVE= getopt skey tcp_wrappers

A packagemusthave abuiltin.mk file to be listed IlPREFER_NATIVE otherwise it is simply ignored
in that list.

55

Chapter 12.
The pkginstall framework

This chapter describes the framework knowmplaginstall ~ , whose key features are:

- Generic installation and manipulation of directories atesfoutside the pkgsrc-handled tree,
LOCALBASE

- Automatic handling of configuration files during instaltatj provided that packages are correctly
designed.

- Generation and installation of system startup scripts.

- Registration of system users and groups.

« Registration of system shells.

- Automatic updating of fonts databases.

The following sections inspect each of the above points taitle

You may be thinking that many of the things described heréddoe easily done with simple code in the
package’s post-installation targebét-install). This is incorrect as the code in them is only
executed when building from source. Machines using binackages could not benefit from it at all (as
the code itself could be unavailable). Therefore, the ordy % achieve any of the items described above
is by means of the installation scripts, which are autorafljigenerated by pkginstall.

12.1. Files and directories outside the installation prefix

As you already know, theLIST file holds a list of files and directories that belong to a pgekd he
names used in it are relative to the installation preffPREFIX}), which means that it cannot register
files outside this directory (absolute path names are nowall). Despite this restriction, some packages
need to install files outside this location; e.g., UnBBIARBASE} or ${PKG_SYSCONFDIR}

The only way to achieve this is to create such files duringltetton time by using the installation
scripts. These scripts can run arbitrary commands, so they the potential to create and manage files
anywhere in the file system. Here is where pkginstall comiesglay: it provides generic scripts to
abstract the manipulation of such files and directoriesdasevariables set in the packag®lakefile

The rest of this section describes these variables.

12.1.1. Directory manipulation

The following variables can be set to request the creatiatirettories anywhere in the file system:

+ MAKE_DIRSandOWN_DIRontain a list of directories that should be created andlshaitempt to be
destroyed by the installation scripts. The difference leetwthe two is that the latter prompts the

56

Chapter 12. The pkginstall framework

administrator to remove any directories that may be leérafeinstallation (because they were not
empty), while the former does not.

« MAKE_DIRS_PERM8ndOWN_DIRS_PERM®Ntain a list of tuples describing which directories
should be created and should attempt to be destroyed bydtadlation scripts. Each tuple holds the
following values, separated by spaces: the directory némewner, its group and its numerical mode.
For example:

MAKE_DIRS_PERMS+= ${VARBASE}/foo/private ${ROOT_USER} ${ROOT_GROUP} 0700

The difference between the two is exactly the same as thelPERMSounterparts.

12.1.2. File manipulation

Creating non-empty files outside the installation prefixickly because theLIST forces all files to be
inside it. To overcome this problem, the only solution isxtract the file in the known place (i.e., inside
the installation prefix) and copy it to the appropriate lamatduring installation (done by the installation
scripts generated by pkginstall). We will call the formes thaster filein the following paragraphs,
which describe the variables that can be used to autonigtared consistently handle files outside the
installation prefix:

« CONF_FILESandSUPPORT_FILESare pairs of master and target files. During installatioretithe
master file is copied to the target one if and only if the lati@es not exist. Upon deinstallation, the
target file is removed provided that it was not modified by tistdllation.

The difference between the two is that the latter promptsithministrator to remove any files that
may be left after deinstallation (because they were not gmwhile the former does not.

« CONF_FILES_PERM&NdSUPPORT_FILES_PERMS&ontain tuples describing master files as well as
their target locations. For each of them, it also specifies thwner, their group and their numeric
permissions, in this order. For example:

SUPPORT_FILES_PERMS+= ${PREFIX}/share/somefile ${VARB ASE}/somefile ${ROOT_USER} ${RO(

The difference between the two is exactly the same as thealPERMSounterparts.

12.2. Configuration files

Configuration files are special in the sense that they araliedtin their own specific directory,
PKG_SYSCONFDIRand need special treatment during installation (most atlwis automated by
pkginstall). The main concept you must bear in mind is thasfinarked as configuration files are
automatically copied to the right place (somewhere inBikleé_SYSCONFDIRduring installationif and
only if they didn’t exist before. Similarly, they will not be remali they have local modifications. This
ensures that administrators never lose any custom chamgesiay have made.

12.2.1. How PKG_SYSCONFDI Ris set

As said before, theKG_SYSCONFDIRariable specifies where configuration files shall be insthallts
contents are set based upon the following variables:

57

Chapter 12. The pkginstall framework

+ PKG_SYSCONFBASEhe configuration’s root directory. Defaults$¢PREFIX}/etc although it may
be overridden by the user to point to his preferred locat&g.(/etc , /etc/pkg , etc.). Packages
must not use it directly.

+ PKG_SYSCONFSUBDIR subdirectory ofPKG_SYSCONFBASEder which the configuration files for
the package being built shall be installed. The definitiothaf variable only makes sense in the
package’'svakefile (i.e., it is not user-customizable).

As an example, consider the Apache packagey/apache2 , which places its configuration files
under thenttpd/ subdirectory oPKG_SYSCONFBASEhis should be set in the package Makefile.

« PKG_SYSCONFVABpecifies the name of the variable that holds this packageBguration directory
(if different from PKG_SYSCONFBA3$Ht defaults toPKGBASHE value, and is always prefixed with
PKG_SYSCONFDIR

+ PKG_SYSCONFDIR.${PKG_SYSCONFVAR}olds the directory where the configuration files for the
package identified bpKG_SYSCONFVAdsshall be placed.

Based on the above variables, pkginstall determines the\@PKG_SYSCONFDIRwvhich is theonly
variable that can be used within a package to refer to its gordtion directory. The algorithm used to
set its value is basically the following:

1. If PKG_SYSCONFDIR.${PKG_SYSCONFVARg set, its value is used.

2. If the previous variable is not defined IRKG_SYSCONFSUBDIR set in the packageldakefile
the resulting value i${PKG_SYSCONFBASE}/${PKG_SYSCONFSUBDIR}

3. Otherwise, it is set t§{PKG_SYSCONFBASE}

It is worth mentioning thas{PKG_SYSCONFDIR}is automatically added tOWN_DIRSSee
Section 12.1.Ivhat this means.

12.2.2. Telling the software where configuration files are

Given that pkgsrc (and users!) expect configuration fileetmta known place, you need to teach each
package where it shall install its files. In some cases yolhaile to patch the package Makefiles to
achieve it. If you are lucky, though, it may be as easy as pgssi extra flag to the configuration script;
this is the case of GNU Autoconf- generated files:

CONFIGURE_ARGS+= --sysconfdir=${PKG_SYSCONFDIR}

Note that this specifies where the package hasdk for its configuration files, not where they will be
originally installed (although the difference is never kip unfortunately).

12.2.3. Patching installations

As said before, pkginstall automatically handles configargfiles. This means thalhe packages
themselves must not touch the contents &f{ PKG_SYSCONFDI R} directly. Bad news is that many
software installation scripts will, out of the box, messhatihe contents of that directory. So what is the
correct procedure to fix this issue?

58

Chapter 12. The pkginstall framework

You must teach the package (usually by manually patchirtg it)stall any configuration files under the
examples hierarchghare/examples/${PKGBASE}/ . This way, thePLIST registers them and the
administrator always has the original copies available.

Once the required configuration files are in place (i.e., utttieexamples hierarchy), the pkginstall
framework can use them as master copies during the packstgdiation to update what is in
${PKG_SYSCONFDIR} To achieve this, the variabl€ONF_FILESandCONF_FILES PERMSre used.
Check outSection 12.1.2or information about their syntax and their purpose. Hsrari example, taken
from themail/mutt package:

EGDIR= ${PREFIX}/share/doc/mutt/samples
CONF_FILES= ${EGDIRYMuttrc ${PKG_SYSCONFDIR}Muttrc

Note that theEGDIRvariable is specific to that package and has no meaning edtsid

12.2.4. Disabling handling of configuration files

The automatic copying of config files can be toggled by settiegenvironment variableKG_CONFIG
prior to package installation.

12.3. System startup scripts

System startup scripts are special files because they miusstadled in a place known by the underlying
OS, usually outside the installation prefix. Therefore dhme rules described 8ection 12.Japply, and
the same solutions can be used. However, pkginstall prexddgecial mechanism to handle these files.

In order to provide system startup scripts, the packagechas t

1. Store the script insidFILESDIR} , with the.sh suffix appended. Considering thent/cups
package as an example, it hasuasd.sh in its files directory.

2. Tell pkginstall to handle it, appending the name of th@s$cwithout its extension, to the
RCD_SCRIPTSvariable. Continuing the previous example:

RCD_SCRIPTS+= cupsd

Once this is done, pkginstall will do the following steps &ach script in an automated fashion:

1. Process the file found in the files directory applying adl shubstitutions described in the
FILES_SUBST variable.

2. Copy the script from the files directory to the examplesdrichy,
${PREFIX}/share/examples/rc.d/ . Note that this master file must be explicitly registered in
thePLIST .

3. Add code to the installation scripts to copy the startuppsérom the examples hierarchy into the
system-wide startup scripts directory.

59

Chapter 12. The pkginstall framework

12.3.1. Disabling handling of system startup scripts

The automatic copying of config files can be toggled by settiegenvironment variable
PKG_RCD_SCRIPT®rior to package installation. Note that the scripts willdheays copied inside the
examples hierarchg{PREFIX}/share/examples/rc.d/ , ho matter what the value of this variable is.

12.4. System users and groups

If a package needs to create special users and/or groupgydastallation, it can do so by using the
pkginstall framework.

Users can be created by adding entries toPk€é_USER%ariable. Each entry has the following syntax,
which mimics/etc/passwd

user:group[:[userid][:[descr][:[nome][:shell]]]]

Only the user and group are required; everything else i®oalj but the colons must be in the right
places when specifying optional bits. By default, a new usthave home directorynonexistent
and login shellsbin/nologin unless they are specified as part of the user element. Ndti tha
description contains spaces, then spaces should be bsttledaaped, as in:

foo:foogrp::The\ Foomister
Similarly, groups can be created using #G_GROUP@ariable, whose syntax is:
group[:groupid]

As before, only the group name is required; the numeric ilents optional.

12.5. System shells

Packages that install system shells should register théheishell databasgstc/shells , to make
things easier to the administrator. This must be done franirtstallation scripts to keep binary packages
working on any system. pkginstall provides an easy way tomqdish this task.

When a package provides a shell interpreter, it has to sé&tKlke SHELLvariable to its absolute file
name. This will add some hooks to the installation scriptsandle it. Consider the following example,
taken fromshells/zsh

PKG_SHELL= ${PREFIX}/bin/zsh

12.5.1. Disabling shell registration

The automatic registration of shell interpreters can bealdéedd by the administrator by setting the
PKG_REGISTER_SHELL®&nvironment variable thlQ

60

Chapter 12. The pkginstall framework
12.6. Fonts

Packages that install X11 fonts should update the datallesétfat index the fonts within each fonts
directory. This can easily be accomplished within the pkit framework.

When a package installs X11 fonts, it must list the diree®imn which fonts are installed in the
FONTS_DIRS.t ype variables, whereype can be one of “ttf”, “typel” or “x11". This will add hooks to
the installation scripts to run the appropriate commandspttate the fonts database files within each of
those directories. For convenience, if the directory patielative, it is taken to be relative to the
package’s installation prefix. Consider the following exdentaken fronfonts/dbz-ttf

FONTS_DIRS.ttf=_ ${PREFIX}/lib/X11/fonts/TTF

12.6.1. Disabling automatic update of the fonts databases

The automatic update of fonts databases can be disable@ layglthinistrator by setting the
PKG_UPDATE_FONTS_D®wironment variable tblQ

61

Chapter 13.
Options handling

Many packages have the ability to be built to support difiesets of featuressd.options.mk isa
framework in pkgsrc that provides generic handling of th@séons that determine different ways in
which the packages can be built. It's possible for the usspezify exactly which sets of options will be
built into a package or to allow a set of global default opsi@pply.

13.1. Global default options

Global default options are listed PKG_DEFAULT_OPTIONSvhich is a list of the options that should be
built into every package if that option is supported. Thigalale should be set ifetc/mk.conf

13.2. Converting packages to use bsd. opti ons. nk

The following example shows holsd.options.mk should be used by the hypothetical “wibble”
package, either in the packaigjekefile , orin afile, e.goptions.mk , that is included by the main
packagemakefile

PKG_OPTIONS_VAR= PKG_OPTIONS.wibble
PKG_SUPPORTED_OPTIONS= wibble-foo Idap
PKG_OPTIONS_OPTIONAL_GROUPS= database
PKG_OPTIONS_GROUP.database= mysql pgsql
PKG_SUGGESTED_OPTIONS= wibble-foo
PKG_OPTIONS_LEGACY_VARS+= WIBBLE_USE_OPENLDAP:Idap
PKG_OPTIONS_LEGACY_OPTS+= foo:wibble-foo

.include "../../mk/bsd.prefs.mk"

this package was previously named wibble2
.if defined(PKG_OPTIONS.wibble2)
PKG_LEGACY_OPTIONS+= ${PKG_OPTIONS.wibble2}
PKG_OPTIONS_DEPRECATED_WARNINGS+= \
"Deprecated variable PKG_OPTIONS.wibble2 used, use "${PK G_OPTIONS_VAR:Q}" ins
.endif

.include "../../mk/bsd.options.mk"

Package-specific option-handling
H#H#

FOO support

L
.if lempty(PKG_OPTIONS:Mwibble-foo)

62

Chapter 13. Options handling

CONFIGURE_ARGS+= --enable-foo
.endif

#Hittt
LDAP support
Hittt
.if lempty(PKG_OPTIONS:Mldap)
include "../../databases/openldap/buildlink3.mk"
CONFIGURE_ARGS+= --enable-ldap=${BUILDLINK_PREFIX.op enldap}
.endif

Lk

database support

Lk

.if lempty(PKG_OPTIONS:Mmysql)
include "../../mk/mysql.buildlink3.mk"

.endif

.if lempty(PKG_OPTIONS:Mpgsql)
include "../../mk/pgsql.buildlink3.mk"

.endif

The first section contains the information about which baojitions are supported by the package, and
any default options settings if needed.

6.
7.

.PKG_OPTIONS_VARS the name of the make(1) variable that the user can set toide¢he default

options. It should be set to PKG_OPTION&gbase. Do not set it to
PKG_OPTIONS.${PKGBASE}, sinceKGBASEHS set aftePKG_OPTIONS_VARS used.

.PKG_SUPPORTED_OPTIONsSa list of build options supported by the package.
.PKG_OPTIONS_OPTIONAL_GROUIB3 list of names of groups of mutually exclusive optionse Th

options in each group are listedMKG_OPTIONS_GROUBr oupnane. The most specific setting of
any option from the group takes precedence over all othéommpin the group. Options from the
groups will be automatically added RKG_SUPPORTED_OPTIONS

.PKG_OPTIONS_REQUIRED_GROUBSike PKG_OPTIONS_OPTIONAL_GROUHSIt building the

packages will fail if no option from the group is selected.

.PKG_OPTIONS_NONEMPTY_SEiBSa list of names of sets of options. At least one option frache

set must be selected. The options in each set are listekldn OPTIONS_SETset nane. Options
from the sets will be automatically addedR&G_SUPPORTED_OPTIONBuIlding the package will
fail if no option from the set is selected.

PKG_SUGGESTED_OPTIONSa list of build options which are enabled by default.

PKG_OPTIONS_LEGACY_VARSa list of “USE_VARI ABLE:opt i on” pairs that map legacy
letc/mk.conf variables to their option counterparts. Pairs should bedddth “+="to keep the
listing of global legacy variables. A warning will be issuigthe user uses a legacy variable.

.PKG_OPTIONS_LEGACY_OPTsa list of “ol d- opti on:new- opt i on” pairs that map options that

have been renamed to their new counterparts. Pairs shoalddssl with “+="to keep the listing of
global legacy options. A warning will be issued if the usegsia legacy option.

63

Chapter 13. Options handling

9. PKG_LEGACY_OPTIONS a list of options implied by deprecated variables useds Tan be used
for cases that neithéKG_OPTIONS LEGACY_VAR®rPKG_OPTIONS LEGACY_OPT&nN handle,
e. g. wherPKG_OPTIONS_VARs renamed.

10.PKG_OPTIONS_DEPRECATED_WARNINSS list of warnings about deprecated variables or options
used, and what to use instead.

A package should never modiBKG_DEFAULT_OPTIONSGr the variable named iRKG_OPTIONS_VAR
These are strictly user-settable. To suggest a defaulf s@tions, usePKG_SUGGESTED_OPTIONS

PKG_OPTIONS_VARust be defined before includihgd.options.mk . If none of
PKG_SUPPORTED_OPTIONSKG_OPTIONS_OPTIONAL _GROURsd
PKG_OPTIONS_REQUIRED_GROU®® defined (as can happen with platform-specific optionsrikerof
them is supported on the current platforiPG_OPTIONSSs set to the empty list and the package is
otherwise treated as not using the options framework.

After the inclusion obsd.options.mk , the variablePKG_OPTIONSontains the list of selected build
options, properly filtered to remove unsupported and daj#ioptions.

The remaining sections contain the logic that is specifiattheoption. The correct way to check for an
option is to check whether it is listed FKG_OPTIONS

.if lempty(PKG_OPTIONS:M option)

13.3. Option Names

Options that enable similar features in different packdlijles optional support for a library) should use
a common name in all packages that support it (like the nantteedfbrary). If another package already
has an option with the same meaning, use the same name.

Options that enable features specific to one package, wireenmlikely that another (unrelated) package
has the same (or a similar) optional feature, should use & paefixed withokgnane- .

If a group of related packages share an optional featurefgpiecthat group, prefix it with the name of
the “main” package (e. gljoware-errno-hack).

For new options, add a line tok/defaults/options.description . Lines have two fields,

separated by tab. The first field is the option name, the seit®ddscription. The description should be a
whole sentence (starting with an uppercase letter and gdth a period) that describes what enabling
the option does. E. g. “Enable ispell support.” The file igsdiby option names.

64

Chapter 14.
The build process

14.1. Introduction

This chapter gives a detailed description on how a packagsilis Building a package is separated into
differentphasegfor examplefetch , build , install), all of which are described in the following
sections. Each phase is splitted into so-caditedjeswhich take the name of the containing phase,
prefixed by one ofre- , do- orpost- . (Examples argre-configure , post-build .) Most of the
actual work is done in theéo- * stages.

The basic steps for building a program are always the sanmst.thé program’s sourceliétfile) must be
brought to the local system and then extracted. After anygpikgpecific patches to compile properly are
applied, the software can be configured, then built (usumllgompiling), and finally the generated
binaries, etc. can be put into place on the system.

14.2. Program location

Before outlining the process performed by the NetBSD paelsygtem in the next section, here’s a brief
discussion on where programs are installed, and whichblaganfluence this.

The automatic variableREFIX indicates where all files of the final program shall be installt is
usually set ta. OCALBASK/usr/pkg), or CROSSBASIKor pkgs in the “cross” category. The value of
PREFIX needs to be put into the various places in the program’s saunere paths to these files are
encoded. Se8ection 8.3andSection 16.3.Tor more details.

When choosing which of these variables to use, follow thiefahg rules:

- PREFIX always points to the location where the current pkg will ketatied. When referring to a
pkg’s own installation path, use “${PREFIX}".

« LOCALBASHSs where all non-X11 pkgs are installed. If you need to cartdta -1 or -L argument to the
compiler to find includes and libraries installed by anoth@n-X11 pkg, use “${LOCALBASE}".

« X11BASEis where the actual X11 distribution (from xsrc, etc.) igatied. When looking fostandard
X11 includes (not those installed by a pkg), use “${X11BASE}

. X1l-based packages are special in that they may be instalkitherX11BASEor LOCALBASE

Usually, X11 packages should be installed unde€ALBASEvhenever possible. Note that you will
need to include/../mk/x11.buildlink3.mk in them to request the presence of X11 and to get
the right compilation flags.

65

Chapter 14. The build process

Even though, there are some packages that cannot be idsialien. OCALBASEthose that come
with app-defaults files. These packages are special andribsybe placed unde&i11BASE To
accomplish this, set eith&SE_X11BASEor USE_IMAKEIn your package.

Some notes: If you need to find includes or libraries insthltie a pkg that has SE_IMAKEor
USE_X11BASHN its pkgMakefile , you need to look itboth${X11BASE} and${LOCALBASE}. To
force installation of all X11 packages l©CALBASEthepkgtools/xpkgwedge package is enabled
by default.

« X11PREFIX should be used to refer to the installed location of an X1kage X11PREFIX will be
set toX11BASEIf xpkgwedge is not installed, and t@CALBASEHf xpkgwedge is installed.

- If xpkgwedge is installed, it is possible to have some paekagstalled irX11BASEand some in
LOCALBASETo determine the prefix of an installed package BiaL_PREFIX definition can be used.
It takes pairs in the format “DIRNAME=<package>", and thekagl) variableDIRNAMEWill be set to
the prefix of the installed package <package>, or “${X11PREHf the package is not installed.

This is best illustrated by example.

The following lines are taken fromwkgsrc/wm/scwm/Makefile

EVAL_PREFIX+= GTKDIR=gtk+

CONFIGURE_ARGS+= --with-guile-prefix=${LOCALBASE:Q}
CONFIGURE_ARGS+= --with-gtk-prefix=${GTKDIR:Q}
CONFIGURE_ARGS+= --enable-multibyte

Specific defaults can be defined for the packages evaluaiteglEMAL_PREFIX, by using a definition
of the form:

GTKDIR_DEFAULT= ${LOCALBASE}
whereGTKDIRcorresponds to the first definition in tE&AL_PREFIX pair.

« Within ${PREFIX} , packages should install files according to hier(7), withékception that manual
pages go int&{PREFIX}/man , not${PREFIX}/share/man

14.3. Directories used during the build process

When building a package, a number of directories is usedte sburce files, temporary files,
pkgsrc-internal files, and so on. These directories area@gd here.

Some of the directory variables contain relative pathnaiflesre are two common base directories for
these relative directorieBKGSRCDIR/PKGPATI$ used for directories that are pkgsrc-specii®RKSRC
is used for directories inside the package itself.

PKGSRCDIR

This is an absolute pathname that points to the pkgsrc roettdiry. Generally, you don’t need it.

PKGPATH
This is a pathname relative RKGSRCDIRhat points to the current package.

66

Chapter 14. The build process
WRKDIR

This is an absolute pathname pointing to the directory whiregork takes place. The distfiles are
extraced to this directory. It also contains temporaryadoges and log files used by the various
pkgsrc frameworks, likbuildlink or thewrappers

WRKSRC

This is an absolute pathname pointing to the directory wiierelistfiles are extracted. It is usually
a direct subdirectory oVRKDIR and often it’s the only directory entry that isn’t hiddemig
variable may be changed by a packagkefile

14.4. Running a phase

You can run a particular phase by typingke phase wherephases the name of the phase. This will
automatically run all phases that are required for this ph@ike default phase ksild , thatis, when
you runmake without parameters in a package directory, the packagédwibiuilt, but not installed.

14.5. The fetch phase

This will check if the file(s) given in the variabl€8STFILES andPATCHFILES(as defined in the
package’s Makefile) are present on the local systefasiripkgsrc/distfiles . If they are not
present, an attempt will be made to fetch them using commeairtie form:

${FETCH_CMD} ${FETCH_BEFORE_ARGS} ${site}${file} ${FET CH_AFTER_ARGS}

where ${site} varies through several possibilities in tuirst, MASTER_SITE_OVERRIDES tried, then

the sites specified in eith&iTES file if defined, elsS8MASTER_SITESor PATCH_SITES as applies,

then finally the value oMASTER_SITE_BACKUPT he order of all except the first can be optionally sorted
by the user, via setting eith®tASTER_SORT_AVWKMASTER_SORT_REGEX

14.6. The checksum phase

After the distfile(s) are fetched, their checksum is gemerand compared with the checksums stored in
the distinfo file. If the checksums don’t match, the buildl®ged. This is to ensure the same distfile is

used for building, and that the distfile wasn’t changed, leygsome malign force, deliberately changed
distfiles on the master distribution site or network lossage

14.7. The extract phase

When the distfiles are present on the local system, they odeel éxtracted, as they usually come in the
form of some compressed archive format.

By default, alIDISTFILES are extracted. If you only need some of them, you can seEXT®RACT_ONLY
variable to the list of those files.

67

Chapter 14. The build process

Extracting the files is usually done by a little prograni/scripts/extract , which already knows
how to extract various archive formats, so most likely yoll mot need to change anything here. But if
you need, the following variables may help you:

EXTRACT_OPTS_{BIN,LHA,PAX,RAR,TAR,ZIP,ZOO}
Use these variables to override the default options for éraetxcommand, which are defined in
mk/scripts/extract

EXTRACT_USING

This variable can be set tax, tar or an absolute pathname pointing to the command with which
tar archives should be extracted.

If the extract program doesn’t serve your needs, you can also overrideXfiRACT_CMBariable,
which holds the command used for extracting the files. Thisroand is executed in tHEWRKSRC}
directory. During execution of this command, the shell abigextract_file holds the absolute
pathname of the file that is going to be extracted.

And if that still does not suffice, you can override tfeextract target in the package Makefile.

14.8. The patch phase

After extraction, all the patches named by B%TCHFILES, those present in the patches subdirectory of
the package as well as in $LOCALPATCHES/$PKGPATH (e.g.

/ustr/local/patches/graphics/png) are applied. Patchfiles ending.ih or.gz are uncompressed
before they are applied, files ending.@mig or.rej are ignored. Any special options to patch(1) can
be handed ifPATCH_DIST_ARGSSeeSection 8.3or more details.

By default patch(1) is given special args to make it fail & fatches apply with some lines of fuzz.
Please fix (regen) the patches so that they apply cleanlyraflemale behind this is that patches that
don’t apply cleanly may end up being applied in the wrong @land cause severe harm there.

14.9. The tools phase
This is covered irChapter 15

14.10. The wrapper phase
[TODO]

14.11. The configure phase

Most pieces of software need information on the header lestem calls, and library routines which are
available on the platform they run on. The process of det@ngithis information is known as
configuration, and is usually automated. In most cases,t $&€supplied with the distfiles, and its
invocation results in generation of header files, Makefi¢s,

68

Chapter 14. The build process

If the package contains a configure script, this can be inv@kesettingHAS_CONFIGURID “yes”. If
the configure script is a GNU autoconf script, you should3¢t)_CONFIGUR® “yes” instead. What
happens in theonfigurephase is roughly:

for d in ${CONFIGURE_DIRS}
cd ${WRKSRC} && cd ${d} && env ${CONFIGURE_ENV} \
${CONFIGURE_SCRIPT} ${CONFIGURE_ARGS}
.endfor

CONFIGURE_DIRgdefault: “.”) is a list of pathnames relative WRKSRAn each of these directories,
the configure script is run with the environm@&@@NFIGURE_EN¥nd argumentSONFIGURE_ARGS
The variableCONFIGURE_ENMCONFIGURE_SCRIPTdefault: “./configure”) andCONFIGURE_ARGS
may all be changed by the package.

If the program uses amakefile ~ for configuration, the appropriate steps can be invoked tijnge
USE_IMAKEt0 “yes”. (If you only want the package installed${X11PREFIX} but xmkmf not being
run, setUSE_X11BASHnstead.)

14.12. The build phase

For building a package, a rough equivalent of the followindeis executed.

for d in ${BUILD_DIRS}
cd ${WRKSRC} && cd ${d} && env ${MAKE_ENV} \
${MAKE_PROGRAM} ${BUILD_MAKE_FLAGS} \
-f ${MAKEFILE} ${BUILD_TARGET}
.endfor

BUILD_DIRS (default: “.”) is a list of pathnames relative WURKSRAn each of these directories,
MAKE_PROGRABSIrun with the environmemMiAKE_EN\and argumentBUILD_MAKE_FLAGSThe
variableSMAKE_ENVBUILD_MAKE_FLAGSMAKEFILEandBUILD_TARGETmay all be changed by the
package.

The default value ofMAKE_PROGRABSI“gmake” if USE_TOOLSontains “gmake”, “make” otherwise.
The default value oMAKEFILEis “Makefile”, andBUILD TARGETdefaults to “all”.

14.13. The test phase
[TODO]

14.14. The install phase

Once the build stage has completed, the final step is to itiseasoftware in public directories, so users
can access the programs and files.

In theinstall phase, a rough equivalent of the following code is executdditionally, before and after
this code, much magic is performed to do consistency cheeiistering the package, and so on.

for d in ${INSTALL_DIRS}

69

Chapter 14. The build process

cd ${WRKSRC} && cd ${d} && env ${MAKE_ENV} \
${MAKE_PROGRAM} ${INSTALL_MAKE_FLAGS} \
-f ${MAKEFILE} ${BUILD_TARGET}
.endfor

The variable’s meanings are analogous to the ones ihuté phaseINSTALL_DIRS defaults to
BUILD_DIRS. INSTALL_TARGETis “install” by default, plus “install.man” itUSE_IMAKEis defined.

In theinstall phase, the following variables are useful. They are allatemns of the install(1) command
that have the owner, group and permissions pré$8TALL is the plain install command. The
specialized variants, together with their intended use, ar

INSTALL_PROGRAM_DIR

directories that contain binaries

INSTALL_SCRIPT_DIR

directories that contain scripts

INSTALL_LIB_DIR

directories that contain shared and static libraries

INSTALL_DATA_DIR

directories that contain data files

INSTALL_MAN_DIR

directories that contain man pages

INSTALL_PROGRAM

binaries that can be stripped from debugging symbols

INSTALL_SCRIPT

binaries that cannot be stripped

INSTALL_GAME

game binaries

INSTALL_LIB

shared and static libraries

INSTALL_DATA

data files

INSTALL_GAME_DATA

data files for games

70

Chapter 14. The build process

INSTALL_MAN
man pages

Some other variables are:

INSTALLATION_DIRS

A list of directories relative t®REFIX that are created by pkgsrc at the beginning ofitistall

phase. If this variable is setlO_MTREE"yes” is assumed, which means that the package claims to
create all needed directories itself before installingsfteit. Therefore this variable should only be
set inMakefile s that are under control of the package’s author.

14.15. The package phase
[TODO]

14.16. Other helpful targets

pre/post-*
For any of the main targets described in the previous sedtiamauxiliary targets exist with “pre-"
and “post-" used as a prefix for the main target’s name. Thagets are invoked before and after
the main target is called, allowing extra configuration atafiation steps be performed from a
package’s Makefile, for example, which a program’s configuergt or install target omitted.

do-*

Should one of the main targets do the wrong thing, and shaeletbe no variable to fix this, you
can redefine it with the do-* target. (Note that redefiningtrget itself instead of the do-* target is
a bad idea, as the pre-* and post-* targets won't be calledhang, etc.) You will not usually need
to do this.

reinstall
If you did amake install and you noticed some file was not installed properly, you epeat the
installation with this target, which will ignore the “alréginstalled” flag.

deinstall

This target does a pkg_delete(1) in the current directdigctvely de-installing the package. The
following variables can be used to tune the behaviour:

PKG_VERBOSE
Add a "-v" to the pkg_delete(1) command.

DEINSTALLDEPENDS

Remove all packages that require (depend on) the given gackais can be used to remove
any packages that may have been pulled in by a given packagd,raake deinstall

71

Chapter 14. The build process

DEINSTALLDEPENDS=1 is done inpkgsrc/x11/kde , this is likely to remove whole
KDE. Works by adding “-R” to the pkg_delete(1) command line.

update

This target causes the current package to be updated tadisevarsion. The package and all
depending packages first get de-installed, then curresiores of the corresponding packages get
compiled and installed. This is similar to manually notingigh packages are currently installed,
then performing a series afiake deinstallandmake install (or whatevetUPDATE_TARGETE set

to) for these packages.

You can use the “update” target to resume package updaticasima previousiake updatewas
interrupted for some reason. However, in this case, maleysur don’t callmake cleanor
otherwise remove the list of dependent packag&sRKDIR Otherwise, you lose the ability to
automatically update the current package along with theeégnt packages you have installed.

Resuming an interruptedake updatewill only work as long as the package tree remains
unchanged. If the source code for one of the packages to tsagptas been changed, resuming
make updatewill most certainly fail!

The following variables can be used either on the commarddirin/etc/mk.conf to alter the
behaviour ofmake update

UPDATE_TARGET

Install target to recursively use for the updated packagelae dependent packages. Defaults
to DEPENDS_TARGHT set, “install” otherwise fomake update e.g.make update
UPDATE_TARGET=package

NOCLEAN

Don't clean up after updating. Useful if you want to leave Wk sources of the updated
packages around for inspection or other purposes. Be surewentually clean up the source
tree (see the “clean-update” target below) or you may rumtiatubles with old source code
still lying around on your nextnake or make update

REINSTALL
Deinstall each package before installing (makif#PENDS_TARGETThis may be necessary
if the “clean-update” target (see below) was called aftegrinipting a runningnake update
DEPENDS_TARGET

Allows you to disable recursion and hardcode the targetéokpges. The default is “update”
for the update target, facilitating a recursive update ef@quisite packages. Only set
DEPENDS_TARGHTyou want to disable recursive updates. W§eDATE_TARGEIhstead to
just set a specific target for each package to be installédglorake update(see above).

clean-update

Clean the source tree for all packages that would get updfateake updatewas called from the
current directory. This target should not be used if theentrpackage (or any of its depending

72

Chapter 14. The build process

packages) have already been de-installed (e.g., afténgaiake updaté or you may lose some
packages you intended to update. As a rule of thumb: onlyhisgargetbeforethe first time you
run make updateand only if you have a dirty package tree (e.g., if you usetLEAN

If you are unsure about whether your tree is clean, you caermejterform anake cleanat the top

of the tree, or use the following sequence of commands frenditectory of the package you want
to update lfeforerunningmake updatefor the first time, otherwise you lose all the packages you
wanted to update!):

nmake cl ean-update

make cl ean CLEANDEPENDS=YES
make update

The following variables can be used either on the commaddirin/etc/mk.conf to alter the
behaviour ofmake clean-update

CLEAR_DIRLIST

After make clean do not reconstruct the list of directories to update fos fjackage. Only use
this if make updatesuccessfully installed all packages you wanted to updatemidlly, this is
done automatically omake update but may have been suppressed byNIECLEANariable
(see above).

info
This target invokes pkg_info(1) for the current packageu ¥an use this to check which version of
a package is installed.

readme

This target generatesREADME.html file, which can be viewed using a browser such as
www/mozilla orwww/links . The generated files contain references to any packageh atédn
the PACKAGESlirectory on the local host. The generated files can be madddoto URLs based
ONFTP_PKG_URL_HOSandFTP_PKG_URL_DIR For example, if | wanted to generate
README.html files which pointed to binary packages on the local machmthe directory
Jusr/ipackages , setFTP_PKG_URL_HOST=file://localhost and
FTP_PKG_URL_DIR=/usr/packages .The${PACKAGES}directory and its subdirectories will be
searched for all the binary packages.

readme-all

Use this target to create a fiREADME-all.html which contains a list of all packages currently
available in the NetBSD Packages Collection, together thighcategory they belong to and a short
description. This file is compiled from thekgsrc/ «/README.html files, so be sure to run this
afteramake readme

cdrom-readme

This is very much the same as the “readme” target (see allmus} to be used when generating a
pkgsrc tree to be written to a CD-ROM. This target also pres®EADME.html files, and can be
made to refer to URLs based @DROM_PKG_URL_HO&MJCDROM_PKG_URL_DIR

73

Chapter 14. The build process

show-distfiles
This target shows which distfiles and patchfiles are needbdild the package ISTFILES and
PATCHFILES, but notpatches/)

show-downlevel

This target shows nothing if the package is not installed.yérsion of this package is installed, but
is not the version provided in this version of pkgsrc, thereaning message is displayed. This
target can be used to show which of your installed packagedawnlevel, and so the old versions
can be deleted, and the current ones added.

show-pkgsrc-dir

This target shows the directory in the pkgsrc hierarchy framch the package can be built and
installed. This may not be the same directory as the one froiohithe package was installed. This
target is intended to be used by people who may wish to upgnaay packages on a single host,
and can be invoked from the top-level pkgsrc Makefile by usireg‘show-host-specific-pkgs”
target.

show-installed-depends
This target shows which installed packages match the cupearkage’ ©EPENDSUseful if out of
date dependencies are causing build problems.
check-shlibs
After a package is installed, check all its binaries and (bR platforms) shared libraries to see if
they find the shared libs they need. Run by defawtitc_DEVELOPER set in/etc/mk.conf
print-PLIST

After a “make install” from a new or upgraded pkg, this priatg an attempt to generate a new
PLIST from afind -newer work/.extract_done An attempt is made to care for shared libs etc., but
it is stronglyrecommended to review the result before putting it iPtéST . On upgrades, it's

useful to diff the output of this command against an alreadistimg PLIST file.

If the package installs files via tar(1) or other methods tlwait't update file access times, be sure to
add these files manually to yoBLIST , as the “find -newer” command used by this target won't
catch them!

SeeSection 10.3or more information on this target.

bulk-package

Used to do bulk builds. If an appropriate binary packageaalyeexists, no action is taken. If not,
this target will compile, install and package it (and its €legs, ifPKG_DEPEND# set properly. See
Section 6.3.1 After creating the binary package, the sources, theijstalled package and its
required packages are removed, preserving free disk space.

Beware that this target may deinstall all packages insthth@ a system!

bulk-install

Used during bulk-installs to install required packageaniup-to-date binary package is available,
it will be installed via pkg_add(1). If notnake bulk-packagewill be executed, but the installed

74

Chapter 14. The build process

binary won’t be removed.

A binary package is considered “up-to-date” to be instaliadokg_add(1) if:

- None of the package’s filemakefile , ...) were modified since it was built.

- None of the package’s required (binary) packages were neddifhce it was built.

Beware that this target may deinstall all packages insthfie a system!

75

Chapter 15.
Tools needed for building or
running

TheUSE_TOOLSlefinition is used both internally by pkgsrc and also forwidiial packages to define
what commands are needed for building a package Bik&D_DEPEND$or for later run-time of an
installed packaged (such BEPEND} If the native system provides an adequate tool, then inyman
cases, a pkgsrc package will not be used.

When building a package, the replacement tools are madkblein a directory (as symlinks or
wrapper scripts) that is early in the executable search gatht like the buildlink system, this helps with
consistent builds.

A tool may be needed to help build a specific package. For elkamperl, GNU make (gmake) or yacc
may be needed.

Also a tool may be needed, for example, because the natitensigssupplied tool may be inefficient for
building a package with pkgsrc. For example, a package meg @NU awk, bison (instead of yacc) or
a better sed.

The tools used by a package can be listed by runmage show-tools

15.1. Tools for pkgsrc builds

The default set of tools used by pkgsrc is definebsithpkg.mk . This includes standard Unix tools,
such ascat, awk, chmod, test, and so on. These can be seen by runningke show-var
VARNAME=USE_TOOLS.

If a package needs a specific program to build therutse_TOOLSariable can be used to define the
tools needed.

15.2. Tools needed by packages

In the following examples, the :pkgsrc means to use the jgkgmision and not the native version for a
build dependency. And the :run means that it is used for aima-dependencies also (and becomes a
DEPENDS). The default is a build dependency which can be glkthuild. (So in this example, it is the
same as gmake:build and pkg-config:build.)

USE_TOOLS+= mktemp:pkgsrc
USE_TOOLS+= gmake perl:run pkg-config

When using the tools framework T®OLS_PATH.foo variable is defined which contains the full path to
the appropriate tool. For examp)OLS_PATH.bash could be “/bin/bash” on Linux systems.

76

Chapter 15. Tools needed for building or running

If you always need a pkgsrc version of the tool at run-timentjust useEPENDSnstead.

15.3. Tools provided by platforms

When improving or porting pkgsrc to a new platform, have &lab(or create) the corresponding
platform specific make file fragment undggsrc/mk/tools/tools.${OPSY S}.mk which defines
the name of the common tools. For example:

.if exists(/usr/bin/bzcat)

TOOLS_PLATFORM.bzcat?= lusr/bin/bzcat

.elif exists(/usr/bin/bzip2)

TOOLS_PLATFORM.bzcat?= lusr/bin/bzip2 -cd

.endif

TOOLS_PLATFORM.true?= true # shell builtin

77

Chapter 16.
Making your package work

16.1. General operation

16.1.1. How to pull in variables from /etc/mk.conf

The problem with package-defined variables that can be iodem viaMAKECONBY /etc/mk.conf is
that make(1) expands a variable as it is used, but evaluegpsqeessor-like statements (.if, .ifdef and
.ifndef) as they are read. So, to use any variable (which nesgebin/etc/mk.conf) in one of the .if*
statements, the filetc/mk.conf must be included before that .if* statement.

Rather than having a number of ad-hoc ways of includéngmk.conf , should it exist, OMAKECONF
should it exist, include thpkgsrc/mk/bsd.prefs.mk file in the package Makefile before any
preprocessor-like .if, .ifdef, or .ifndef statements:

.include "../../mk/bsd.prefs.mk"

.if defined(USE_MENUS)
...
.endif

If you wish to set theCFLAGSvariable in/etc/mk.conf |, please make sure to use:
CFLAGS+= -your -flags

Using CFLAGS=(i.e. without the “+") may lead to problems with packages theed to add their own
flags. Also, you may want to take a look at tevel/cpuflags package if you're interested in
optimization for the current CPU.

16.1.2. Where to install documentation

Documentation should be installed iriPREFIX}/share/doc/${PKGBASE} or
${PREFIX}/share/doc/${PKGNAME} (the latter includes the version number of the package).

16.1.3. Restricted packages

Some licenses restrict how software may be re-distribuitedrder to satisfy these restrictions, the
package system defines five make variables that can be sdgtthese restrictions:

+ RESTRICTED

78

Chapter 16. Making your package work

This variable should be set whenever a restriction existgafdless of its kind). Set this variable to a
string containing the reason for the restriction.

« NO_BIN_ON_CDROM

Binaries may not be placed on CD-ROM. Set this variab{RESTRICTED} whenever a binary
package may not be included on a CD-ROM.

« NO_BIN_ON_FTP

Binaries may not be placed on an FTP server. Set this variaB@ESTRICTED} whenever a binary
package may not not be made available on the Internet.

. NO_SRC_ON_CDROM

Distfiles may not be placed on CD-ROM. Set this variabl${RESTRICTED} if re-distribution of the
source code or other distfile(s) is not allowed on CD-ROMs.

. NO_SRC_ON_FTP

Distfiles may not be placed on FTP. Set this variabl${RESTRICTED} if re-distribution of the
source code or other distfile(s) via the Internet is not adidw

Please note that the usend®_PACKAGHEGNORE NO_CDROMr other generic make variables to denote
restrictions is deprecated, because they unconditiopedlyent users from generating binary packages!

16.1.4. Handling dependencies

Your package may depend on some other package being presehthere are various ways of
expressing this dependency. pkgsrc support8thieD_DEPENDSandDEPENDSlefinitions, the
USE_TOOLSlefinition, as well as dependencies widldlink3.mk , which is the preferred way to
handle dependencies, and which uses the variables nameel &s@Chapter 1Xor more information.

The basic difference between the two variables is as folldlwe DEPENDSlefinition registers that
pre-requisite in the binary package so it will be pulled inentihe binary package is later installed,
whilst theBUILD_DEPENDSIefinition does not, marking a dependency that is only neéatdalilding
the package.

This means that if you only need a package present whilst g@buglding, it should be noted as a
BUILD_DEPENDS

The format for 8BUILD_DEPENDSand aDEPENDSIefinition is:
<pre-reg-package-name>:../../<category>/<pre-req-pa ckage>

Please note that the “pre-req-package-name” may incluglefahe wildcard version numbers
recognized by pkg_info(1).

1. If your package needs another package’s binaries oridsrto build or run, and if that package has
a buildlink3.mk file available, use it:

.include "../../graphics/jpeg/buildlink3.mKk"

2. If your package needs to use another package to builfidisélthere is nduildlink3.mk file
available, use thBUILD DEPENDSIefinition:

BUILD_DEPENDS+= autoconf-2.13:../../devel/autoconf

79

Chapter 16. Making your package work

3. If your package needs a library with which to link and aghgre is nduildlink3.mk file
available, this is specified using tbEPENDSIefinition. An example of this is thgrint/lyx
package, which uses the xpm library, version 3.4;j to build:

DEPENDS+= xpm-3.4j:../..Igraphics/xpm
You can also use wildcards in package dependences:
DEPENDS+= Xpm-[0-9] *:../../graphics/xpm

Note that such wildcard dependencies are retained whetirggddnary packages. The dependency
is checked when installing the binary package and any packéich matches the pattern will be
used. Wildcard dependencies should be used with care.

The “-[0-9]*” should be used instead of “-*” to avoid poteally ambiguous matches such as
“tk-postgresql” matching a “tk-*DEPENDS

Wildcards can also be used to specify that a package will lomilgl against a certain minimum
version of a pre-requisite:

DEPENDS+= tiff>=3.5.4:../../graphics/tiff

This means that the package will build against version 6tHe tiff library or newer. Such a
dependency may be warranted if, for example, the API of thratiy has changed with version 3.5.4
and a package would not compile against an earlier versitiff.of

Please note that such dependencies should only be updateddkage requires a newer
pre-requisite, but not to denote recommendations suchcasigeupdates or ABI changes that do
not prevent a package from building correctly. Such recomiagons can be expressed using
RECOMMENDED

RECOMMENDED+= tiff>=3.6.1:../../graphics/tiff

In addition to the abovBEPENDdine, this denotes that while a package will build against
tiff>=3.5.4, at least version 3.6.1 is recommendeBCOMMENDEDtries will be turned into
dependencies unless explicitly ignored (in which case aingrwill be printed).

To ignore these dependency recommendations and just usegthieedDEPENDSset
IGNORE_RECOMMENDED=YERis may make it easier and faster to update packages Birlj u
pkgsrc, since older compatible dependencies can continbe tised. This is useful for people who
watch their rebuilds very carefully; it is not very good asemgral-purpose hammer. If you use it,
you need to be mindful of possible ABI changes, includingsthfrom the underlying OS.

Packages that are built with recommendations ignored malganoploaded to ftp.NetBSD.org by
developers and should not be used across different systensay have different versions of
binary packages installed.

For security fixes, please update the package vulneraBifite as well as settingECOMMENDED
seeSection 16.1.8or more information.

4. If your package needs some executable to be able to rueatigrand if there’s nduildlink3.mk
file, this is specified using theEPENDariable. Theprint/lyx package needs to be able to
execute the latex binary from the teTeX package when it ramd that is specified:

DEPENDS+= teTeX-[0-9] =*:././print/teTeX

The comment about wildcard dependencies from previougpaph applies here, too.

80

Chapter 16. Making your package work

If your package needs files from another package to buildtheefrst part of the “do-configure” target

print/ghostscript5 package (it relies on the jpeg sources being present in sdonn during the
build):
if [! -e ${ PKGSRCDIR}/graphics/jpeg/${WRKDIR:T}/jpeg- 6b]; then \
cd ${ PKGSRCDIRY../../graphics/jpeg && ${MAKE} extract A

fi

If you build any other packages that way, please make sunedhidng files are deleted too when this
package’s working files are cleaned up. The easiest way to dols/ adding a pre-clean target:

pre-clean:
cd ${ PKGSRCDIRY../..Igraphics/jpeg && ${MAKE} clean

Please also note tiBUILD USES_MSGFMandBUILD USES GETTEXT_Mdefinitions, which are
provided as convenience definitions. The former works owtivr msgfmt(1) is part of the base system,
and, if it isn't, installs thelevel/gettext package. The latter adds a build dependency on either an
installed version of an older gettext package, or if it isimistalls thedevel/gettext-m4 package.

16.1.5. Handling conflicts with other packages

Your package may conflict with other packages a user migaadir have installed on his system, e.g. if
your package installs the same set of files like another ggeckaour pkgsrc tree.

In this case you can S&ONFLICTSto a space-separated list of packages (including versiogytour
package conflicts with.

For examplex11/Xaw3d andxl11/Xaw-Xpm install the same shared library, thus you set in
pkgsrc/x11/Xaw3d/Makefile

CONFLICTS= Xaw-Xpm-[0-9] *
and inpkgsrc/x11/Xaw-Xpm/Makefile

CONFLICTS= Xaw3d-[0-9] =

Packages will automatically conflict with other packagethhie name prefix and a different version
string. “Xaw3d-1.5" e.g. will automatically conflict withhe older version “Xaw3d-1.3".

16.1.6. Packages that cannot or should not be built

There are several reasons why a package might be instructed build under certain circumstances. If
the package builds and runs on most platforms, the excepsioould be noted with
NOT_FOR_PLATFORN the package builds and runs on a small handful of plat&rset
ONLY_FOR_PLATFORIiMstead. BottONLY_FOR_PLATFORMANOT_FOR_PLATFORMe OS triples
(OS-version-platform) that can use glob-style wildcards.

If the package should be skipped (for example, becausevtges functionality already provided by the
system), sePKG_SKIP_REASOND a descriptive message. If the package should fail beczrse
preconditions are not met, SekG_FAIL_REASONo a descriptive message.

81

Chapter 16. Making your package work

16.1.7. Packages which should not be deleted, once installe d

To ensure that a package may not be deleted, once it has Istelteid, thePKG_PRESERVHefinition
should be set in the package Makefile. This will be carried @ty binary package that is made from this
pkgsrc entry. A “preserved” package will not be deleted ggikg_delete(1) unless the “-f” option is
used.

16.1.8. Handling packages with security problems

When a vulnerability is found, this should be noted in
localsrc/security/advisories/pkg-vulnerabilities , and after committing that file, use
make uploadin the same directory to update the file on ftp.NetBSD.org.

After fixing the vulnerability by a patch, itBKGREVISIONshould be increased (this is of course not
necessary if the problem is fixed by using a newer releaseecfdfiware). In addition, if a
buildlink3.mk file exists for an affected package, a correspon@idti DLINK_RECOMMENDEPkg
entry should be added or updated in it.

Also, if the fix should be applied to the stable pkgsrc brabehsure to submit a pullup request!

Binary packages already on ftp.NetBSD.org will be handidisautomatically by a weekly cron job.

16.1.9. How to handle compiler bugs

Some source files trigger bugs in the compiler, based on cmatibins of compiler version and
architecture and almost always relation to optimisatiandgenabled. Common symptoms are gcc
internal errors or never finishing compiling a file.

Typically, a workaround involves testing tivACHINE_ARCland compiler version, disabling
optimisation for that fileMACHINE_ARCkompiler combination, and documenting it in
pkgsrc/doc/HACKS . See that file for a number of examples!

16.1.10. How to handle incrementing versions when fixing an e xisting
package

When making fixes to an existing package it can be useful taghéhe version number PKGNAMETO
avoid conflicting with future versions by the original auth@ “nb1”, “nb2”, ... suffix can be used on
package versions by settifikGREVISION=1(2, ...). The “nb” is treated like a “.” by the pkg tools. e.g.

DISTNAME= foo-17.42
PKGREVISION= 9

will result in aPKGNAMBf “foo-17.42nb9”.

When a new release of the package is release®KIEREVISIONshould be removed, e.g. on a new
minor release of the above package, things should be like:

DISTNAME= foo-17.43

82

Chapter 16. Making your package work

16.1.11. Portability of packages

One appealing feature of pkgsrc is that it runs on many diffeplatforms. As a result, it is important to
ensure, where possible, that packages in pkgsrc are parididre are some particular details you
should pay attention to while working on pkgsrc.

16.1.11.1. ${INSTALL}, ${INSTALL_DATA_DIR}, ...

The BSD-compatiblénstall supplied with some operating systems will not perform mbestone
operation at a time. As such, you should call “${INSTALL}*ce like this:

${INSTALL_DATA_DIR} ${PREFIX}/dirl
${INSTALL_DATA DIR} ${PREFIX}/dir2

16.2. Possible downloading issues

16.2.1. Packages whose distfiles aren’t available for plain downloading

If you need to download from a dynamic URL you can BENAMIC_MASTER_SITE&nd amake fetch

will call files/getsite.sh with the name of each file to download as an argument, exgeittio
output the URL of the directory from which to downloadgtaphics/ns-cult3d is an example of
this usage.

If the download can't be automated, because the user mustispérsonal information to apply for a
password, or must pay for the source, or whatever, you carF§8tCH_MESSAGHE a macro which
displays a message explaining the situatic#eTCH_MESSAGHRuSst be executable shell commands, not
just a message. (Generally, it execl&CHOY}). As of this writing, the following packages use this:
cad/simian , devellipv6socket , emulators/vmware-module , fonts/acroread-jpnfont ,
multimedia/realplayer , Sysutils/storage-manager , www/ap-aolserver , www/openacs .

Try to be consistent with them.

16.2.2. How to handle modified distfiles with the 'old’ name

Sometimes authors of a software package make some modifisatfter the software was released, and
they put up a new distfile without changing the package’sisansumber. If a package is already in
pkgsrc at that time, the checksum will no longer match. Theexts of the new distfile should be
compared against the old one before changing anything, ke swzre the distfile was really updated on
purpose, and that no trojan horse or so crept in. Then, thectoray to work around this is to set
DIST_SUBDIR to a unique directory name, usually basedP®GNAME_NOREM case this happens
more oftenPKGNAMEan be used (thus including thexX suffix) or a date stamp can be appended, like
${PKGNAME_NOREV}-YYYYMMDDo not forget regenerating thiistinfo file after that, since it
contains thédIST_SUBDIR path in the filenames. Furthermore, a mail to the packag&'mesiseems
appropriate telling them that changing distfiles afterasés without changing the file names is not good
practice.

83

Chapter 16. Making your package work

16.3. Configuration gotchas

16.3.1. Shared libraries - libtool

pkgsrc supports many different machines, with differepéotformats like a.out and ELF, and varying
abilities to do shared library and dynamic loading at allaGeompany this, varying commands and
options have to be passed to the compiler, linker, etc. tthgeRight Thing, which can be pretty
annoying especially if you don't have all the machines atry@and to test things. Thaevel/libtool

pkg can help here, as it just “knows” how to build both statid dynamic libraries from a set of source
files, thus being platform-independent.

Here’s how to use libtool in a pkg in seven simple steps:

1. AddUSE_LIBTOOL=yes to the package Makefile.

2. For library objects, use “${LIBTOOL} --mode=compile ${C}" in place of “${CC}". You could
even add it to the definition aiG if only libraries are being built in a given Makefile. Thisen
command will build both PIC and non-PIC library objects, sayneed not have separate shared and
non-shared library rules.

3. For the linking of the library, remove any “ar”, “ranlibdnd “ld -Bshareable” commands, and
instead use:

${LIBTOOL} --mode=link ${CC} -0 ${.TARGET:..a=.la} ${OBJS .o0=.lo} \
-rpath ${PREFIX}/lib -version-info major:minor

Note that the library is changed to haveea extension, and the objects are changed to hake a
extension. Chang@eBJSas necessary. This automatically creates all ofdheso.major.minor ,
and ELF symlinks (if necessary) in the build directory. Beesto include “-version-info”, especially
when major and minor are zero, as libtool will otherwisepstrf the shared library version.

From the libtool manual:

So, libtool library versions are described by three integer s:
CURRENT

The most recent interface number that this library implemen ts.
REVISION

The implementation number of the CURRENT interface.

AGE
The difference between the newest and oldest interfaces tha t
this library implements. In other words, the library implem ents
all the interface numbers in the range from number ‘CURRENT -
AGE’ to ‘CURRENT".

If two libraries have identical CURRENT and AGE numbers, the n the
dynamic linker chooses the library with the greater REVISIO N number.

The “-release” option will produce different results fooat and ELF (excluding symlinks) in only
one case. An ELF library of the form “libfoo-releasexsg. will have a symlink of “libfoo.sox.y”
on an a.out platform. This is handled automatically.

The “-rpath argument” is the install directory of the libydreing built.

84

Chapter 16. Making your package work

In thePLIST, include only thela file, the other files will be added automatically.

4. When linking shared objeci6) files, i.e. files that are loaded via dlopen(3), NOT sharedhlies,
use “-module -avoid-version” to prevent them getting vemgiacked on.

ThePLIST file gets thefoo.so entry.

5. When linking programs that depend on these librdvefsrethey are installed, preface the cc(1) or
Id(2) line with “${LIBTOOL} --mode=link”, and it will find the correct libraries (static or shared),
but please be aware that libtool will not allow you to spedifielative path in -L (such as
“-L../somelib), because it expects you to change that argpt to be thela file. e.g.

${LIBTOOL} --mode=link ${CC} -0 someprog -L../somelib -Is omelib
should be changed to:

${LIBTOOL} --mode=link ${CC} -o someprog ../somnelib/sonelib.la
and it will do the right thing with the libraries.

6. When installing libraries, preface the install(1) orfpgommand with “${LIBTOOL}
--mode=install’, and change the library namel¢o . e.g.

${LIBTOOL} --mode=install ${BSD_INSTALL_DATA} ${SOMELI B:.a=.la} ${PREFIX}/lib
This will install the statica , shared library, any needed symlinks, and run Idconfig(8).

7. In yourPLIST, include only thela file (this is a change from previous behaviour).

16.3.2. Using libtool on GNU packages that already support | ibtool

Add USE_LIBTOOL=yes to the package Makefile. This will override the package’s titmool in most
cases. For older libtool using packages, libtool is madedmnfig script during the do-configure step;
you can check the libtool script location by doimgke configure; find work*/ -name libtool.

LIBTOOL_OVERRIDEspecifies which libtool scripts, relative WWRKSRQo override. By default, it is set
to “libtool */libtool */*/libtool”. If this does not match he location of the package’s libtool script(s), set
it as appropriate.

If you do not need .a static libraries built and installed, then USELIBTOOL_OVERRIDENSstead.

If your package makes use of the platform-independentrijifiar loading dynamic shared objects, that
comes with libtool (libltdl), you should include develftitil/buildlink3.mk.

Some packages use libtool incorrectly so that the packagenotavork or build in some circumstances.
Some of the more common errors are:

- The inclusion of a shared object (-module) as a dependeatyilin an executable or library. This in
itself isn’t a problem if one of two things has been done:

1. The shared object is named correctly,litgoo.la , notfoo.la

2. The -dlopen option is used when linking an executable.

« The use of libltdl without the correct calls to initialisati routines. The function It_dlinit() should be
called and the macrorDL_SET_PRELOADED_SYMBOI®luded in executables.

85

Chapter 16. Making your package work

16.3.3. GNU Autoconf/Automake

If a package needs GNU autoconf or automake to be executedénerate the configure script and
Makefile.in makefile templates, then they should be exedatagre-configure target.

For packages that need only autoconf:

AUTOCONF_REQD= 2.50 # if default version is not good enough
USE_TOOLS+= autoconf # use "autoconf213" for autoconf-2.1 3

pre-configure:
cd ${WRKSRC}; autoconf

and for packages that need automake and autoconf:

AUTOMAKE_REQD= 1.7.1 # if default version is not good enough
USE_TOOLS+= automake # use "automakel4d" for automake-1.4

pre-configure:
cd ${WRKSRC}; \
aclocal; autoheader; \
automake -a --foreign -i; autoconf

Packages which use GNU Automake will almost certainly rejGNU Make.

There are times when the configure process makes additibaages to the generated files, which then
causes the build process to try to re-execute the automegkesee. This is prevented by touching
various files in the configure stage. If this causes probleitisyour package you can set
AUTOMAKE_OVERRIDE=N®the package Makefile.

16.4. Building the package

16.4.1. CPP defines

Sometimes you need to compile different code dependingetatiget platform. The C preprocessor has
a set of predefined macros that can be queried by usftef FOO or#if defined(FOO) . Among
these macros are usually ones that describe the target GiPbpanating system. Depending of which of
the macros are defined, you can write code that uses featuicgseuto a specific platform. Generally you
should rather use the GNU autotools (automake, autocanj,tetcheck for specific features (like the
existence of a header file, a function or a library), but sammes this is not possible or desired.

In that case you can use the predefined macros below to comfigur code to the platform it runs on.
Almost every operating system, hardware architecture antpder has its own macro. For example, if
the macros _GNUC_,_ i386__ and__NetBSD__ are all defined, you know that you are using
NetBSD on an i386 compatible CPU, and your compiler is GCC.

86

Chapter 16. Making your package work

16.4.1.1. CPP defines for operating systems

To distinguish between 4.4 BSD-derived systems and theféise world, you should use the following
code.

#include <sys/param.h>
#if (defined(BSD) && BSD >= 199306)

/ = BSD-specific code goes here */
telse

/ * non-BSD-specific code goes here */
#endif

If this distinction is not fine enough, you can also use thifahg defines.

FreeBSD __FreeBSD__
DragonFly _ DragonFly
Interix __INTERIX

Linux linux, __linux, __linux__
NetBSD _ NetBSD___
OpenBSD _ OpenBSD__
Solaris sun, _ sun

16.4.1.2. CPP defines for CPUs

i386 i386, _ i386, _ i386__
MIPS __mips
SPARC sparc, __sparc

16.4.1.3. CPP defines for compilers

GCC __GNUC__ (major version), _ GNUC_MINOR___
SunPro __ SUNPRO_C (0x570 for version 5.7)

16.4.2. Examples of CPP defines for some platforms

The list of the CPP identification macros for hardware andaipey system may depend on the compiler
that is used. The following list contains some examplesrirat help you to choose the right ones. For
example, if you want to conditionally compile code on Saadon’'t use _sun__, as the SunPro
compiler does not define it. Use sun instead.

GCC 3.3.3 + SUSE Linux 9.1 +i386

__ELF_, gnu_linux__, 386, i386_ , linux,_ukn , unix, __unix__,i386, linux,
unix.

GCC 2.95 + NetBSD 1.6.2 + 386
__ELF_, _NetBSD__, 386, i386__,i386.

87

Chapter 16. Making your package work
GCC 3.3.3 + NetBSD 2.0 +1i386
__ELF_,_NetBSD__, i386,_ i386__,i386.

GCC 4 + Solaris 8 + SPARC

__ELF_, sparc, _sparc__, sun,_ sun__, SVR4&4 sv _unix,___unix__,sparc, sun,
unix.

SunPro 5.7 + Solaris 8 + SPARC

__SVR4, sparc,___sun,___unix, sparc, sun, unix.

16.4.3. Getting a list of CPP defines

If your system uses the GNU C Compiler, you can get a list oflsyisithat are defined by default, e.g. to
identify the platform, with the following command:

gcc -E -dM - < /dev/null

On other systems you may get the list by using the systemé&a#iygace utility (ktrace, truss, strace) to
have a look which arguments are passed to the actual compiler

16.5. Package specific actions

16.5.1. User interaction

Occasionally, packages require interaction from the @set this can be in a number of ways:

« help in fetching the distfiles

- help to configure the package before it is built
« help during the build process

« help during the installation of a package

TheINTERACTIVE_STAGEdefinition is provided to notify the pkgsrc mechanism of ateiactive stage
which will be needed, and this should be set in the packagakefile ,e.g.:

INTERACTIVE_STAGE= build
Multiple interactive stages can be specified:

INTERACTIVE_STAGE= configure install

16.5.2. Handling licenses

A package may be covered by a license which the user has oohagmeed to accept. For these cases,
pkgsrc contains a mechanism to note that a package is covgegarticular license, and the package

88

Chapter 16. Making your package work

cannot be built unless the user has accepted the licenstal{@tion of binary packages are not currently
subject to this mechanism.) Packages with licenses thatituer Open Source according to the Open
Source Initiative or Free according to the Free SoftwarenBation will not be marked with a license

tag. Packages with licenses that have not been determimaedbeither definition will be marked with a
license tag referring to the license. This will prevent 8inigy unless pkgsrc is informed that the license is
acceptable, and enables displaying the license.

The license tag mechanism is intended to address copynétdited issues surrounding building,
installing and using a package, and not to address redistibissues (SeRESTRICTEDand
NO_SRC_ON_FTRetc.). However, the above definition of licenses for whadstare not needed implies
that packages with redistribution restrictions shouldehtags.

Denoting that a package is covered by a particular licendeng by placing the license in
pkgsrc/licenses and setting th&lICENSE variable to a string identifying the license, e.g. in
graphics/xv

LICENSE= xv-license

When trying to build, the user will get a notice that the pagkas covered by a license which has not
been accepted:

% make

===> xv-3.10anb9 has an unacceptable license: xv-license.

===> To view the license, enter "/usr/bin/make show-licens e".
===> To indicate acceptance, add this line to your /etc/mk.c onf:
===> ACCEPTABLE_LICENSES+=xv-license

= Error code 1

The license can be viewed withake show-licenseand if it is considered appropriate, the line printed
above can be added ttc/mk.conf to indicate acceptance of the particular license:

ACCEPTABLE_LICENSES+=xv-license

When adding a package with a new license, the license texidbe added tpkgsrc/licenses for
displaying. A list of known licenses can be seen in this dogcas well as by looking at the list of
(commented outACCEPTABLE_LICENSESariable settings ipkgsrc/mk/defaults/mk.conf

The use of.ICENSE=shareware , LICENSE=no-commercial-use , and similar language is deprecated
because it does not crisply refer to a particular license faxother problem with such usage is that it
does not enable a user to denote acceptance of the licerssifagle package without accepting the
same license text for another package. In particular, #nshe inappropriate when e.g. one accepts a
particular license to indicate to pkgsrc that a fee has beah p

16.5.3. Installing score files

Certain packages, most of them in the games category,lingabre file that allows all users on the
system to record their highscores. In order for this to wititk,binaries need to be installed setgid and
the score files owned by the appropriate group and/or owrati{ionally the "games" user/group). The
following variables, documented in more detaihii/defaults/mk.conf , control this behaviour:
SETGIDGAMEGAMEDATAMOPEAMEGRRSAMEMODBAMEOWN

89

Chapter 16. Making your package work
Note that per default, setgid installation of games is deslsettingSETGIDGAME=YE®ill set all the
other variables accordingly.

A package should therefor never hard code file ownershipagsscpermissions but rely on
INSTALL_GAMEandINSTALL_GAME_DATAO set these correctly.

16.5.4. Packages containing perl scripts

If your package contains interpreted perl scripts REERLACE_PERIto ensure that the proper interpreter
path is setREPLACE_PERIshould contain a list of scripts, relative WoRKSRGhat you want adjusted.

16.5.5. Packages with hardcoded paths to other interpreter S

Your package may also contain scripts with hardcoded patbther interpreters besides (or as well as)
perl. To correct the full pathname to the script interprgteu need to set the following definitions in
your Makefile (we shall useclsh in this example):

REPLACE_INTERPRETER+= tcl

_REPLACE.tcl.old= . * [bin/tclsh
_REPLACE.tcl.new= ${PREFIX}/bin/tclsh
_REPLACE_FILES.tcl= # list of tcl scripts which need to be fi xed,

relative to ${WRKSRC}, just as in REPLACE_PERL

16.5.6. Packages installing perl modules

Makefiles of packages providing perl5 modules should ineling Makefile fragment
..I..lang/perl5/module.mk . It provides ado-configuretarget for the standard perl configuration
for such modules as well as various hooks to tune this cor#igur. See comments in this file for details.

Perl5 modules will install into different places dependamgthe version of perl used during the build
process. To address this, pkgsrc will append lines tarth®T corresponding to the files listed in the
installed.packlist file generated by most perl5 modules. This is invoked by dajini
PERL5_PACKLISTto a space-separated list of paths to packlist files, e.g.:

PERL5_PACKLIST= ${PERL5_SITEARCH}/auto/Pg/.packlist

The variable®ERL5_SITELIB , PERL5_SITEARCH andPERL5_ARCHLIBrepresent the three locations
in which perl5 modules may be installed, and may be used % packages that don’t have a packlist.
These three variables are also substituted for irPth8T .

16.5.7. Packages installing info files

Some packages install info files or use the “makeinfo” ortalisnfo” commands. Each of the info files:

- is considered to be installed in the direct$fPREFIX}/${INFO_DIR}
- is registered in the Info directory filfPREFIX}/${INFO_DIR}/dir ,

- and must be listed as a filename in tNEO_FILES variable in the package Makefile.

90

Chapter 16. Making your package work

INFO_DIR defaults to “info” and can be overridden in the package MékefiSTALL andDEINSTALL
scripts will be generated to handle registration of the filés in the Info directory file. The
“install-info” command used for the info files registratimeither provided by the system, or by a
special purpose package automatically added as depenideeeged.

A package which needs the “makeinfo” command at build timstdefine the variable SE_MAKEINFO
in its Makefile. If a minimum version of the “makeinfo” comnmhis needed it should be noted with the
TEXINFO_REQUDvariable in the packagdakefile . By default, a minimum version of 3.12 is required.
If the system does not providenaakeinfo command or if it does not match the required minimum, a
build dependency on thievel/gtexinfo package will be added automatically.

The build and installation process of the software providgthe package should not use thstall-info
command as the registration of info files is the task of the&kpgeINSTALL script, and it must use the
appropriatanakeinfo command.

To achieve this goal, the pkgsrc infrastructure createsrioeg scripts for thenstall-info andmakeinfo
commands in a directory listed early®ATH

The script overridingnstall-info has no effect except the logging of a message. The scriptidivey
makeinfo logs a message and according to the valugs#_MAKEINF@NATEXINFO_REQDeither run
the appropriatenakeinfo command or exit on error.

16.5.8. Packages installing man pages

Many packages install manual pages. The man pages ardddsiadei${PREFIX}/${PKGMANDIR}
which is/usr/pkg/man by default. PKGMANDIRIefaults to “man”. For example, you can set
PKGMANDIRO “share/man” to have man pages install under/pkg/share/man/ by default.

Note: The support for a custom PKGMANDIRS not complete.

ThePLIST files can just usenan/ as the top level directory for the man page file entries angkigsrc
framework will convert as needed.

Packages that are configured withlU_CONFIGUREet as “yes”, by default will use th&onfigure
--mandir switch to set where the man pages should be indtdllee path iSSNU_CONFIGURE_MANDIR
which defaults ta{PREFIX}/${PKGMANDIR} .

Packages that useNU_CONFIGURBuUt do not use --mandir, can SEONFIGURE_HAS_MANDI® “no”.
Or if the ./configure script uses a non-standard use of --mandir, you can set
GNU_CONFIGURE_MAND#® needed.

SeeSection 10.5or information on installation of compressed manual pages

16.5.9. Packages installing GConf2 data files

If a package installschemas or .entries files, used by GConf2, you need to take some extra steps to
make sure they get registered in the database:

1. Include../../devel/GConf2/schemas.mk instead of itsuildlink3.mk file. This takes care
of rebuilding the GConf2 database at installation and deltagion time, and tells the package

91

Chapter 16. Making your package work

where to install GConf2 data files using some standard camfigiguments. It also disallows any
access to the database directly from the package.

2. Ensure that the package installs.sshemas files undei${PREFIX}/share/gconf/schemas f
they get installed und&{PREFIX}/etc , you will need to manually patch the package.

3. Check the PLIST and remove any entries under the etc/gliatdtory, as they will be handled
automatically. SeS&ection 7.14or more information.

4. Define theGCONF2_SCHEMA&riable in youmMakefile with a list of all .schemas files installed
by the package, if any. Names must not contain any directanithem.

5. Define theGCONF2_ENTRIESariable in youMakefile — with a list of all .entries files installed
by the package, if any. Names must not contain any directanithem.

16.5.10. Packages installing scrollkeeper data files

If a package installomf files, used by scrollkeeper, you need to take some extra &tepake sure they
get registered in the database:

1. Include../../textproc/scrollkeeper/omf.mk instead of itsuildlink3.mk file. This
takes care of rebuilding the scrollkeeper database aflatsda and deinstallation time, and
disallows any access to it directly from the package.

2. Check the PLIST and remove any entries undefitideta/scrollkeeper directory, as they
will be handled automatically.

3. Remove thahare/omf directory from the PLIST. It will be handled by scrollkeeper

16.5.11. Packages installing X11 fonts

If a package installs font files, you will need to rebuild tieats database in the directory where they get

installed at installation and deinstallation time. This && automatically done by using the pkginstall
framework.

You can list the directories where fonts are installed inROATS _DIRS.t ype variables, whereype

can be one of “ttf”, “typel” or “x11". Also make sure that thatdbase filéonts.dir is not listed in
the PLIST.

Note that you should not create new directories for fontsteiad use the standard ones to avoid that the
user needs to manually configure his X server to find them.

16.5.12. Packages installing GTK2 modules
If a package installs GTK2 immodules or loaders, you needke some extra steps to get them

registered in the GTK2 database properly:

1. Include../../x11/gtk2/modules.mk instead of itduildlink3.mk file. This takes care of
rebuilding the database at installation and deinstatdtioe.

2. SetGTK2_IMMODULES=YES$your package installs GTK2 immodules.

92

Chapter 16. Making your package work

3. SetGTK2_LOADERS=YE#® your package installs GTK2 loaders.

4. Patch the package to not touch any of the GTK2 databasaglgirThese are:
« libdata/gtk-2.0/gdk-pixbuf.loaders
« libdata/gtk-2.0/gtk.immodules

5. Check the PLIST and remove any entries undeiiibdata/gtk-2.0 directory, as they will be
handled automatically.

16.5.13. Packages installing SGML or XML data

If a package installs SGML or XML data files that need to bestged in system-wide catalogs (like
DTDs, sub-catalogs, etc.), you need to take some extra: steps

1. Include../../textproc/xmicatmgr/catalogs.mk in your Makefile , which takes care of
registering those files in system-wide catalogs at ingtaitaand deinstallation time.

2. SetSGML_CATALOG® the full path of any SGML catalogs installed by the package
3. SetXML_CATALOGS® the full path of any XML catalogs installed by the package.

4. SetSGML_ENTRIESo individual entries to be added to the SGML catalog. Theseecin groups of
three strings; see xmlcatmgr(1) for more information (&peadly, arguments recognized by the
'add’ action). Note that you will normally not use this vasia.

5. SetXML_ENTRIESto individual entries to be added to the XML catalog. Thesaed groups of
three strings; see xmlcatmgr(1) for more information (#peadly, arguments recognized by the
'add’ action). Note that you will normally not use this vabie.

16.5.14. Packages installing extensions to the MIME databa se

If a package provides extensions to the MIME database bgllimgg .xml files inside
${PREFIX}/share/mime/packages , you need to take some extra steps to ensure that the database
kept consistent with respect to these new files:

1. Include../../databases/shared-mime-info/mimedb.mk (avoid using thebuildlink3.mk
file from this same directory, which is reserved for inclusfoiom otherbuildlink3.mk files). It
takes care of rebuilding the MIME database at installatioh @einstallation time, and disallows any
access to it directly from the package.

2. Check the PLIST and remove any entries undeshiage/mime directory,excepffor files saved
undershare/mime/packages . The former are handled automatically by the
update-mime-database program, but the latter are padegmadent and must be removed by the
package that installed them in the first place.

3. Remove anghare/mime/ = directories from the PLIST. They will be handled by the
shared-mime-info package.

93

Chapter 16. Making your package work

16.5.15. Packages using intltool

If a package uses intltool during its build, include thie/textproc/intltool/buildlink3.mk
file, which forces it to use the intltool package provided kggrc, instead of the one bundled with the
distribution file.

This tracks intltool’s build-time dependencies and useddtest available version; this way, the package
benefits of any bug fixes that may have appeared since it wessed.

16.5.16. Packages installing startup scripts

If a package contains a rc.d script, it won't be copied inmgtartup directory by default, but you can
enable it, by adding the optid?)KG_RCD_SCRIPTS=YE#® /etc/mk.conf . This option will copy the
scripts into/etc/rc.d when a package is installed, and it will automatically remthe scripts when
the package is deinstalled.

16.5.17. Packages installing TeX modules

If a package installs TeX packages into the texmf treelsie database of the tree needs to be updated.

Note: Except the main TeX packages such as teTeX-texmf, packages should install files into
PKG_LOCALTEXMFPREF|Xhot PKG_TEXMFPREFIX

1. Include../../print/teTeX/module.mk instead of./../mk/tex.buildlink3.mk . This
takes care of rebuilding the-R database at installation and deinstallation time.

2. If your package installs files into a texmf tree other tHaandne aPKG_LOCALTEXMFPREF)$et
TEXMFDIRSto the list of all texmf trees that need database update.

If your package also installs font map files that need to besteigd usingipdmap, set
TEX_FONTMAPS® the list of all such font map files. Themdmap will be run automatically at
installation/deinstallation to enable/disable font mégsffor TeX output drivers.

3. Make sure that none &f-R databases are includedmnIST , as they will be removed only by the
teTeX-bin package.

16.6. Feedback to the author

If you have found any bugs in the package you make availabjepihad to do special steps to make it
run under NetBSD or if you enhanced the software in variohsmivays, be sure to report these changes
back to the original author of the program! With that kind opport, the next release of the program can
incorporate these fixes, and people not using the NetBSDagasksystem can win from your efforts.

Support the idea of free software!

94

Chapter 17.
Debugging

To check out all the gotchas when building a package, hertharsteps that | do in order to get a
package working. Please note this is basically the same aswas explained in the previous sections,
only with some debugging aids.

« Be sure to se?KG_DEVELOPER= /etc/mk.conf
« Install pkgtools/url2pkg , create a directory for a new package, change into it, theom@pkg :

% nkdi r /usr/pkgsrc/category/ exanmpl epkg
% cd /usr/ pkgsrc/category/ exanpl epkg
% url 2pkg http://ww. exanpl e. com path/to/distfile.tar.gz

- EdittheMakefile as requested.
- Fillin the DESCFKile
- Runmake configure

+ Add any dependencies glimpsed from documentation and thiggcwe step to the package’s
Makefile

- Make the package compile, doing multiple rounds of

% make

% pkgvi ${WRKSRC}/ sone/fil e/ that/does/ not/conpile
% nkpat ches

% pat chdi f f

% nmv ${ WRKDI R}/ . newpat ches/ *» pat ches

% make nps

% make cl ean

Doing as non-root user will ensure that no files are modifiatl shouldn’t be, especially during the
build phasemkpatches patchdiff andpkgvi are from thepkgtools/pkgdiff package.

+ Look at theMakefile , fix if necessary; seSection 8.1

. Generate ®LIST:

make install

make print-PLI ST >PLI ST
make deinstall

make install

make deinstall

H o OH H H

You usually need to bmot to do this. Look if there are any files left:
make print-PLI ST
If this reveals any files that are missingRnIST , add them.

- Now that thePLIST is OK, install the package again and make a binary package:

95

Chapter 17. Debugging
make reinstal
make package
Delete the installed package:
pkg_del ete bl ub

Repeat the abowmake print-PLIST command, which shouldn’t find anything now:
make print-PLI ST

Reinstall the binary package:

pkgadd .../blub.tgz

Play with it. Make sure everything works.

Runpkglint from pkgtools/pkglint , and fix the problems it reports:
pkglint

Submit (or commit, if you have cvs access); &fapter 18

96

Chapter 18.
Submitting and Committing

18.1. Submitting your packages

You have to separate between binary and “normal” (sourcekgzges here:

- precompiled binary packages

Our policy is that we accept binaries only from pkgsrc depels to guarantee that the packages don’t
contain any trojan horses etc. This is not to annoy anyonggliér to protect our users! You're still
free to put up your home-made binary packages and tell thielwdrere to get them. NetBSD
developers doing bulk builds and wanting to upload themsaleesection 6.3.8

- packages

First, check that your package is complete, compiles anslwail; seeChapter 17and the rest of this
document. Next, generate an uuencoded gzipped tar(1yearghreferably with all files in a single
directory. Finally,send-prwith category “pkg”, a synopsis which includes the packagme and
version number, a short description of your package (cesitgfithe COMMENT variable or DESCR
file are OK) and attach the archive to your PR.

If you want to submit several packages, please send a sefRafor each one, it’s easier for us to
track things that way.

Alternatively, you can also import new packages into pkesie (“pkgsrc work-in-progress”); see the
homepage at http://pkgsrc-wip.sourceforge.net/ foritheta

18.2. General notes when adding, updating, or removing pack ages

Please note all package additions, updates, moves, and/aeniopkgsrc/doc/CHANGES . It's very
important to keep this file up to date and conforming to thetég format, because it will be used by
scripts to automatically update pages on www.NetBSD.ottp (www.NetBSD.org/) and other sites.
Additionally, check thepkgsrc/doc/TODO file and remove the entry for the package you updated or
removed, in case it was mentioned there.

There is a make target that helps in creating prap&sNGE®ntries:make changes-entrylt uses the
optionalCTYPEandNETBSD_LOGIN_NAM#ariables. The general usage is to first make sure that your
CHANGESile is up-to-date (to avoid having to resolve conflicts lada) and then tad to the package
directory. For package updatesake changes-entnjs enough. For new packages, or package moves or
removals, set theTYPEvariable on the command line to "Added", "Moved", or "Remazé&’ou can set
NETBSD_LOGIN_NAMiA /etc/mk.conf if your local login name is not the same as your NetBSD login
name. Don't forget to commit the changegt@src/doc/CHANGES !

97

Chapter 18. Submitting and Committing

18.3. Committing: Importing a package into CVS

This section is only of interest for pkgsrc developers witlitevaccess to the pkgsrc repository. Please
remember that cvs imports files relative to the current waglkdirectory, and that the pathname that you
give thecvs import command is so that it knows where to place the files in the igpgsNewly created
packages should be imported with a vendor tag of “TNF” andease tag of “pkgsrc-base”, e.g:

$ cd .../pkgsrc/category/pkgname
$ cvs import pkgsrc/category/pkgname TNF pkgsrc-base

Remember to move the directory from which you imported ouhefway, or cvs will complain the next
time you “cvs update” your source tree. Also don'’t forgetdal éhe new package to the category’s
Makefile

The commit message of the initial import should include pathe DESCKile, so people reading the
mailing lists know what the package is/does.

For new packages, “cvs import” is preferred to “cvs add” hsesthe former gets everything with a
single command, and provides a consistent tag.

18.4. Updating a package to a newer version

Please always put a concise, appropriate and relevant synofithie changes between old and new
versions into the commit log when updating a package. Thergaxious reasons for this:

- A URL is volatile, and can change over time. It may go away cleteby or its information may be
overwritten by newer information.

« Having the change information between old and new versioosii CVS repository is very useful for
people who use either cvs or anoncvs.

- Having the change information between old and new versionsii CVS repository is very useful for
people who read the pkgsrc-changes mailing list, so thatdhe make tactical decisions about when
to upgrade the package.

Please also recognize that, just because a new version ckagmhas been released, it should not
automatically be upgraded in the CVS repository. We preféret conservative in the packages that are
included in pkgsrc - development or beta packages are nibt tha best thing for most places in which
pkgsrc is used. Please use your judgement about what shoiltogpkgsrc, and bear in mind that
stability is to be preferred above new and possibly untefetaiires.

18.5. Moving a package in pkgsrc

1. Make a copy of the directory somewhere else.
2. Remove all CVS dirs.
Alternatively to the first two steps you can also do:

% cvs -d user @vs. Net BSD. org: / cvsroot export -D today pkgsrc/category/package

98

Chapter 18. Submitting and Committing

and use that for further work.

3. Fix CATEGORIESand anyDEPEND®aths that just did “../package” instead of
“..I..Icategory/package”.

4. cvs import the modified package in the new place.

5. Check if any package depends on it:

% cd /usr/pkgsrc
% grep / package */=*/NMakefilex /x/buildlinkx

6. Fix paths in packages from step 5 to point to new location.
7.cvs rm (-f) the package at the old location.
8. Remove fronoldcategory/Makefile
9. Add tonewcategory/Makefile
10. Commit the changed and removed files:
% cvs comit ol dcat egory/ package ol dcat egory/ Makefil e newcategory/ Makefile

(and any packages from step 5, of course).

99

Chapter 109.
Porting pkgsrc

The pkgsrc system has already been ported to many opergtitenss, hardware architectures and
compilers. This chapter explains the necessary steps te piajsrc even more portable.

19.1. Porting pkgsrc to a new operating system

To port pkgsrc to a new operating system (calgasin this example), you need to touch the following
files:

bootstrap/mods/mk/ M/ CS.sys.mk

This file contains some basic definitions, for example theaahthe C compiler.

mk/bsd.prefs.mk
Insert code that defines the variab&3SY$S0OS VERSIONLOWER_OS VERSIQNOWER_VENDQR
MACHINE_ARCHOBJECT_FMTAPPEND_ELFand the other variables that appear in this file.
mk/platform/MyOS.mk
This file contains the platform-specific definitions that ased by pkgsrc. Start by copying one of
the other files and edit it to your needs.
mk/platform/MyOS.pkg.dist

This file contains a list of directories, together with theérmission bits and ownership. These

directories will be created automatically with every pagkéhat does not explicitly s&tO_MTREE

There have been some discussions about whether this filededet all, but with no result.
mk/platform/MyOS.x11.dist

Just copy one of the pre-existing x11.dist files to ymuns.x11.dist

mk/tools/bootstrap.mk

On some operating systems, the tools that are provided héthase system are not good enough

for pkgsrc. For example, there are many versions of sedét hitve a narrow limit on the line

length they can process. Therefore pkgsrc brings its owls tadnich can be enabled here.
mk/tools/ My0S.mk

This file defines the paths to all the tools that are needed byothe other package in pkgsrc, as
well as by pkgsrc itself. Find out where these tools are o ptatform and add them.

Now, you should be able to build some basic packagesldilgperl5 |, shells/bash

100

Chapter 19. Porting pkgsrc

19.2. Adding support for a new compiler
TODO

101

Appendix A.
A simple example package:
bison

We checked to find a piece of software that wasn'’t in the paekagllection, and picked GNU bison.
Quite why someone would want to havison when Berkeleyaccis already present in the tree is
beyond us, but it's useful for the purposes of this exercise.

A.l. files

A.1.1. Makefile
$NetBSD$
#
DISTNAME= bison-1.25
CATEGORIES= devel
MASTER_SITES= ${MASTER_SITE_GNU}
MAINTAINER= thorpej@NetBSD.org
HOMEPAGE= http://www.gnu.org/software/bison/bison.ht ml
COMMENT= GNU yacc clone
GNU_CONFIGURE= yes
INFO_FILES= bison.info
.include "../../mk/bsd.pkg.mk"

A.1.2. DESCR
GNU version of yacc. Can make re-entrant parsers, and numero us other
improvements. Why you would want this when Berkeley yacc(1) is part
of the NetBSD source tree is beyond me.

A.1.3. PLIST

@comment $NetBSD$
bin/bison
man/manl/bison.1.gz

102

Appendix A. A simple example package: bison

share/bison.simple
share/bison.hairy

A.1.4. Checking a package with pkglint

The NetBSD package system comes vpikigtools/pkglint which helps to check the contents of
these files. After installation it is quite easy to use, jusirtge to the directory of the package you wish
to examine and execupkglint :

$ pkglint
looks fine.

Depending on the supplied command line arguments (seepidli, more checks will be performed.
Use e.gpkglint -Call -Wall for a very thorough check.

A.2. Steps for building, installing, packaging
Create the directory where the package lives, plus anyiaoxilirectories:

cd /usr/pkgsrc/lang
nkdir bison

cd bison

nkdir patches

CreateMakefile , DESCRandPLIST (seeChapter §then continue with fetching the distfile:

make fetch

>> bison-1.25.tar.gz doesn’'t seem to exist on this system.

>> Attempting to fetch from ftp://prep.ai.mit.edu/pub/gn u/l.

Requesting ftp://prep.ai.mit.edu/pub/gnu//bison-1.25 .tar.gz (via ftp://orpheus.amdahl.com:80/)
ftp: Error retrieving file: 500 Internal error

>> Attempting to fetch from ftp://wuarchive.wustl.edu/sy stems/gnul//.
Requesting ftp://wuarchive.wustl.edu/systems/gnu//bi son-1.25.tar.gz (via ftp://orpheus.amdahl.com:8
ftp: Error retrieving file: 500 Internal error

>> Attempting to fetch from ftp://ftp.freebsd.org/pub/Fr eeBSD/distfiles//.
Requesting ftp://ftp.freebsd.org/pub/FreeBSD/distfil es//bison-1.25.tar.gz (via ftp://orpheus.amdahl.c
Successfully retrieved file.

Generate the checksum of the distfile idistinfo
make makesum
Now compile:

make

>> Checksum OK for bison-1.25.tar.gz.
===> Extracting for bison-1.25

===> Patching for bison-1.25

103

=—==>
=—==>

creating cache ./config.cache
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
updating

Ignoring empty patch directory
Configuring for bison-1.25

for gcc... cc

for minix/config.h...

for
for
for
for
for
for
for
for

string.h... yes
stdlib.h... yes

alloca... yes
strerror... yes

creating ./config.status
creating Makefile

Building for bison-1.25
-DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIBH=1

===>
cc -C
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc

rm -f

sed -e "/Mtline/ s|bison|/usr/pkg/share/bison|" < ./biso

-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1

-DXPFILE=\"/usr/pkg/share/bison.simple\"

-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1
-DSTDC_HEADERS=1

bison.s1

memory.h... yes
working const...
working alloca.h... no

cache ./config.cache

whether we are using GNU C... yes
for a BSD compatible install... /usr/bin/install
how to run the C preprocessor... cc -E
no
for POSIXized ISC...

whether cross-compiling... no

ANSI C header files... yes

no

yes

-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1

-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1

Everything seems OK, so install the files:

make install
>> Checksum OK for bison-1.25.tar.gz.
Installing for bison-1.25

=—==>

-DXPFIL

Appendix A. A simple example package: bison

-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1

-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1
-DHAVE_STDLIBH=1

-g -0 bison LRO.o allocate.o closure.o conflicts.o deriv
Ufiles.c:240: warning: mktemp() possibly used unsafely,

-c -0 bin -g bin

-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1

-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1
-DHAVE_MEMORY_H=1

es.o files.o

consider using mkstemp()

n.simple > bison.sl

104

-DHAVE_ALI
-DHAVE_ALI
-DHAVE_ALI
-DHAVE_ALI
-DHAVE_ALI

E1=\"/usr/pkg/share/bison.hairy\"

-DHAVE_ALI
-DHAVE_ALI
-DHAVE_ALI
-DHAVE_ALI
-DHAVE_ALI
-DHAVE_ALI
-DHAVE_ALI
-DHAVE_ALI
-DHAVE_ALI
-DHAVE_ALI
-DHAVE_ALI
-DHAVE_ALI
-DHAVE_ALI
-DHAVE_ALI
-DHAVE_ALI

getargs.o

Appendix A. A simple example package: bison

sh ./mkinstalldirs /usr/pkg/bin /usr/pkg/share /usr/pkg /info /usr/pkg/man/manil
rm -f Jusr/pkg/bin/bison
cd /usr/pkg/share; rm -f bison.simple bison.hairy

rm -f Jusr/pkg/man/manl/bison.1 /usr/pkg/info/bison.in fo *

install -c -0 bin -g bin -m 555 bison /usr/pkg/bin/bison

/usr/bin/install -c -0 bin -g bin -m 644 bison.s1 /usr/pkg/s hare/bison.simple
lusr/bin/install -c -0 bin -g bin -m 644 ./bison.hairy /usr/ pkg/share/bison.hairy
cd .; for f in bison.info *; do /usr/bin/install -c -0 bin -g bin -m 644 $f /usr/pkg/info
/usr/bin/install -c -0 bin -g bin -m 644 ./bison.1 /usr/pkg/ man/manl/bison.1

===> Registering installation for bison-1.25

You can now use bison, and also - if you decide so - removelitpkiy_delete bison Should you decide
that you want a binary package, do this now:

make package

>> Checksum OK for bison-1.25.tar.gz.

===> Building package for bison-1.25

Creating package bison-1.25.tgz

Registering depends:.

Creating gzip'd tar ball in '/u/pkgsrc/lang/bison/bison- 1.25.197’

Now that you don’t need the source and object files any moeanalip:

make clean
===> Cleaning for bison-1.25

105

Appendix B.
Build logs

B.1. Building figlet

nmake

===> Checking for vulnerabilities in figlet-2.2.1nb2

=> figlet221.tar.gz doesn’t seem to exist on this system.

=> Attempting to fetch figlet221.tar.gz from ftp:/ftp.fi glet.org/pub/figlet/program/unix/.
=> [172219 bytes]

Connected to ftp.plig.net.

220 ftp.plig.org NcFTPd Server (licensed copy) ready.

331 Guest login ok, send your complete e-mail address as pass word.
230-You are user #5 of 500 simultaneous users allowed.

230-

230- o

230- |)b P

230- | | e

230- 0 b b s e

230- (I I || ||

230-

230- »» Welcome to ftp.plig.org **

230-

230-Please note that all transfers from this FTP site are log ged. If you
230-do not like this, please disconnect now.

230-

230-This arhive is available via

230-

230-HTTP: http://ftp.plig.org/

230-FTP: ftp://ftp.plig.org/ (max 500 connections)

230-RSYNC: rsync://ftp.plig.org/ (max 30 connections)

230-

230-Please email comments, bug reports and requests for pac kages to be
230-mirrored to ftp-admin@plig.org.

230-

230-

230 Logged in anonymously.

Remote system type is UNIX.

Using binary mode to transfer files.

200 Type okay.

250 "/pub" is new cwd.

250-"/pubf/figlet" is new cwd.

250-

250-Welcome to the figlet archive at ftp.figlet.org
250-

250- ftp://ftp.figlet.org/publ/figlet/

106

250-

250-The official FIGlet web page is:

250- http://www.figlet.org/

250-

250-If you have questions, please mailto:info@figlet.org
250-contribute a font or something else, you can email us.
250

250 "/publ/figlet/program" is new cwd.

250 "/publ/figlet/program/unix" is new cwd.

local: figlet221.tar.gz remote: figlet221.tar.gz

502 Unimplemented command.

227 Entering Passive Mode (195,40,6,41,246,104)

150 Data connection accepted from 84.128.86.72:65131; tra
38% | wrrwkkmmrihine | 65800
226 Transfer completed.

172219 bytes received in 00:02 (75.99 KB/s)

221 Goodbye.

=> Checksum OK for figlet221.tar.gz.

===> Extracting for figlet-2.2.1nb2

Appendix B. Build logs

. If you want to

nsfer starting for figlet221.tar.gz
64.16 KB/s 00:01 ETA

===> Required installed package ccache-[0-9] * . ccache-2.3nbl found

===> Patching for figlet-2.2.1nb2

===> Applying pkgsrc patches for figlet-2.2.1nb2
===> Overriding tools for figlet-2.2.1nb2

===> Creating toolchain wrappers for figlet-2.2.1nb2
===> Configuring for figlet-2.2.1nb2

===> Building for figlet-2.2.1nb2

gcc -O2 -DDEFAULTFONTDIR=\"/usr/pkg/share/figlet\" -DD
chmod a+x figlet

gcc -O2 -o chkfont chkfont.c

=> Unwrapping files-to-be-installed.

#

make install

===> Checking for vulnerabilities in figlet-2.2.1nb2
===> |nstalling for figlet-2.2.1nb2

install -d -0 root -g wheel -m 755 /usr/pkg/bin
install -d -0 root -g wheel -m 755 /usr/pkg/man/man6
mkdir -p /usr/pkg/share/figlet

cp figlet /usr/pkg/bin

cp chkfont /usr/pkg/bin

chmod 555 figlist showfigfonts

cp figlist /usr/pkg/bin

cp showfigfonts /usr/pkg/bin

cp fonts/ = .flf /usr/pkg/share/figlet

cp fonts/ = .flc /usr/pkg/share/figlet

cp figlet.6 /usr/pkg/man/man6

===> Registering installation for figlet-2.2.1nb2

#

EFAULTFONTFILE=\"standard.flif\" figlet.c

107

Appendix B. Build logs
B.2. Packaging figlet

make package

===> Checking for vulnerabilities in figlet-2.2.1nb2

===> Packaging figlet-2.2.1nb2

===> Building binary package for figlet-2.2.1nb2

Creating package /home/cvs/pkgsrc/packages/i386/All/f iglet-2.2.1nb2.tgz
Using SrcDir value of /usr/pkg

Registering depends:.

#

108

Appendix C.
Layout of the FTP server’s
package archive

Layout for precompiled binary packages on ftp.NetBSD.org:

/pub/NetBSD/packages/
distfiles/

Unpacked pkgsrc trees

pkgsrc-current -> /pub/NetBSD/NetBSD-current/pkgsrc
pkgsrc-2003Q4 -> N/A

pkgsrc-2004Q1/pkgsrc

pkgsrc archives

pkgsrc-current.tar.gz -> ../NetBSD-current/tar_files/ pkgsrc.tar.gz
pkgsrc-2003Q4.tar.gz -> N/A

pkgsrc-2004Q1.tar.gz -> N/A

Per pkgsrc-release/OS-release/arch package archives
pkgsrc-2003Q4/
NetBSD-1.6.2/
386/
All/
archivers/
foo -> ../All/foo

pkgsrc-2004Q1/
NetBSD-1.6.2/
i386/
All/

NetBSD-2.0/
i386/
All/

Sun0S-5.9/
sparc/
All/
x86/
All/

Per os-release package archive convenience links

109

Appendix C. Layout of the FTP server’s package archive

NetBSD-1.6.2 -> 1.6.2
1.6.2/
i386 -> ../pkgsrc-2004Q1/NetBSD-1.6.2/i386
m68k/
All/
archivers/
foo -> ../All/foo

amiga -> m68k
atari -> m68k

2.0 -> NetBSD-2.0 # backward compat, historic
NetBSD-2.0/

i386 -> ../pkgsrc-2004Q1/NetBSD-2.0/i386
Sun0S-5.9/

sparc -> ../pkgsrc-2004Q1/SunOS-5.9/sparc
x86 -> ../pkgsrc-2004Q1/Sun0OS-5.9/x86

To create:

1. Run bulk build, se&ection 6.3

2. Upload /usr/pkgsrc/packages to
ftp://ftp.NetBSD.org/pub/NetBSD/packages/\

pkgsrc-2004Q4N # pkgsrc-branch
‘uname -s'-‘uname -r'\ # OS & version
‘uname -p’ # architecture

3. If necessary, create a symliltk-s ‘uname -m*‘ ‘uname -p‘ (amiga -> m68k, ...

110

Appendix D.
Editing guidelines for the pkgsrc
guide

This section contains information on editing the pkgsradgutself.

D.1. Targets

The pkgsrc guide’s source code is store@kpsrc/doc/guideffiles , and several files are created
fromit:

» pkgsrc/doc/pkgsrc.txt
» pkgsrc/doc/pkgsrc.html

« http://www.NetBSD.org/Documentation/pkgsrc/ :the documentation on the NetBSD website
will be built from pkgsrc and kept up to date on the web sertgatf. This means yomustmake sure
that your changes haven't broken the build!

« http://www.NetBSD.org/Documentation/pkgsrc/pkgsrc.p df : PDF version of the pkgsrc
guide.

« http://www.NetBSD.org/Documentation/pkgsrc/pkgsrc.p s: PostScript version of the
pkgsrc guide.

D.2. Procedure

The procedure to edit the pkgsrc guide is:

- Make sure you have the packages needed to re-generate tbre gkide (and other XML-based
NetBSD documentation) installed. These are “netbsd-dorctfeating the ASCIl and HTML
versions, and “netbsd-doc-print” for the PostScript and=RBrsions. You will need both packages
installed, to make sure documentation is consistent aalb&®mats. The packages can be found in
pkgsrc/meta-pkgs/netbsd-doc andpkgsrc/meta-pkgs/netbsd-doc-print

- Edit the XML file(s) inpkgsrc/doc/guide/files

- Runmake extract && make do-lint in pkgsrc/doc/guide to check the XML syntax, and fix it if
needed.

- Runmake in pkgsrc/doc/guide to build the HTML and ASCII version.

- Ifall is well, run make install-docto put the generated files inp&gsrc/doc

111

Appendix D. Editing guidelines for the pkgsrc guide

cvs commit pkgsrc/doc/guide/files
cvs commit -m re-generate pkgsrc/doc/pkgsrc.{html,txt}

Until the webserver on www.NetBSD.org is really updatedastically to pick up changes to the
pkgsrc guide automatically, also ramake install-htdocs HTDOCSDIR=../../../htdocgor similar,
adjustHTDOCSDIR).

cvs commit htdocs/Documentation/pkgsrc

112

	The pkgsrc guide
	Table of Contents
	Chapter 1.
	What is pkgsrc?
	1.1. Introduction
	1.2. Overview
	1.3. Terminology
	1.4. Typography

	I. The pkgsrc user's guide
	Chapter 2.
	Where to get pkgsrc and how to keep it uptodate
	2.1. As tar file
	2.2. Via SUP
	2.3. Via CVS
	2.4. Keeping pkgsrc uptodate via CVS

	Chapter 3.
	Using pkgsrc on systems other than NetBSD
	3.1. Bootstrapping pkgsrc
	3.2. Platformspecific notes
	3.2.1. Darwin (Mac OS X)
	3.2.1.1. Using a disk image
	3.2.1.2. Using a UFS partition

	3.2.2. FreeBSD
	3.2.3. Interix
	3.2.3.1. When installing Interix/SFU
	3.2.3.2. What to do if Interix/SFU is already installed
	3.2.3.3. Important notes for using pkgsrc
	3.2.3.4. Limitations of the Interix platform
	3.2.3.5. Known issues for pkgsrc on Interix

	3.2.4. IRIX
	3.2.5. Linux
	3.2.6. OpenBSD
	3.2.7. Solaris
	3.2.7.1. If you are using gcc
	3.2.7.2. If you are using Sun WorkShop
	3.2.7.3. Buildling 64bit binaries with SunPro
	3.2.7.4. Common problems

	Chapter 4.
	Using pkgsrc
	4.1. Using binary packages
	4.1.1. Finding binary packages
	4.1.2. Installing binary packages
	4.1.3. A word of warning

	4.2. Building packages from source
	4.2.1. Requirements
	4.2.2. Fetching distfiles
	4.2.3. How to build and install
	4.2.4. Selecting the compiler

	Chapter 5.
	Configuring pkgsrc
	5.1. General configuration
	5.2. Variables affecting the build process
	5.3. Developer/advanced settings
	5.4. Selecting Build Options

	Chapter 6.
	Creating binary packages
	6.1. Building a single binary package
	6.2. Settings for creation of binary packages
	6.3. Doing a bulk build of all packages
	6.3.1. Configuration
	6.3.1.1. build.conf
	6.3.1.2. /etc/mk.conf
	6.3.1.3. prebuild.local

	6.3.2. Other environmental considerations
	6.3.3. Operation
	6.3.4. What it does
	6.3.5. Disk space requirements
	6.3.6. Setting up a sandbox for chrooted builds
	6.3.7. Building a partial set of packages
	6.3.8. Uploading results of a bulk build

	6.4. Creating a multiple CDROM packages collection
	6.4.1. Example of cdpack

	Chapter 7.
	Frequently Asked Questions
	7.1. Are there any mailing lists for pkgrelated discussion?
	7.2. Where's the pkgviews documentation?
	7.3. Utilities for package management (pkgtools)
	7.4. How to use pkgsrc as nonroot
	7.5. How to resume transfers when fetching distfiles?
	7.6. How can I install/use XFree86 from pkgsrc?
	7.7. How can I install/use X.org from pkgsrc?
	7.8. How to fetch files from behind a firewall
	7.9. How do I tell make fetch to do passive FTP?
	7.10. How to fetch all distfiles at once
	7.11. What does Don't know how to make /usr/share/tmac/tmac.andoc mean?
	7.12. What does Could not find bsd.own.mk mean?
	7.13. Using 'sudo' with pkgsrc
	7.14. How do I change the location of configuration files?
	7.15. Automated security checks

	II. The pkgsrc developer's guide
	Chapter 8.
	Package components files, directories and contents
	8.1. Makefile
	8.2. distinfo
	8.3. patches/*
	8.4. Other mandatory files
	8.5. Optional files
	8.6. work*
	8.7. files/*

	Chapter 9.
	Programming in Makefiles
	9.1. Makefile variables
	9.1.1. Naming conventions
	9.2. Code snippets
	9.2.1. Adding things to a list
	9.2.2. Converting an internal list into an external list
	9.2.3. Passing variables to a shell command
	9.2.4. Quoting guideline
	9.2.5. Workaround for a bug in BSD Make

	Chapter 10.
	PLIST issues
	10.1. RCS ID
	10.2. Semiautomatic PLIST generation
	10.3. Tweaking output of make printPLIST
	10.4. Variable substitution in PLIST
	10.5. Man page compression
	10.6. Changing PLIST source with PLISTSRC
	10.7. Platformspecific and differing PLISTs
	10.8. Sharing directories between packages

	Chapter 11.
	Buildlink methodology
	11.1. Converting packages to use buildlink3
	11.2. Writing buildlink3.mk files
	11.2.1. Anatomy of a buildlink3.mk file
	11.2.2. Updating BUILDLINKDEPENDS.pkg in buildlink3.mk files

	11.3. Writing builtin.mk files
	11.3.1. Anatomy of a builtin.mk file
	11.3.2. Global preferences for native or pkgsrc software

	Chapter 12.
	The pkginstall framework
	12.1. Files and directories outside the installation prefix
	12.1.1. Directory manipulation
	12.1.2. File manipulation

	12.2. Configuration files
	12.2.1. How PKGSYSCONFDIR is set
	12.2.2. Telling the software where configuration files are
	12.2.3. Patching installations
	12.2.4. Disabling handling of configuration files

	12.3. System startup scripts
	12.3.1. Disabling handling of system startup scripts

	12.4. System users and groups
	12.5. System shells
	12.5.1. Disabling shell registration

	12.6. Fonts
	12.6.1. Disabling automatic update of the fonts databases

	Chapter 13.
	Options handling
	13.1. Global default options
	13.2. Converting packages to use bsd.options.mk
	13.3. Option Names

	Chapter 14.
	The build process
	14.1. Introduction
	14.2. Program location
	14.3. Directories used during the build process
	14.4. Running a phase
	14.5. The fetch phase
	14.6. The checksum phase
	14.7. The extract phase
	14.8. The patch phase
	14.9. The tools phase
	14.10. The wrapper phase
	14.11. The configure phase
	14.12. The build phase
	14.13. The test phase
	14.14. The install phase
	14.15. The package phase
	14.16. Other helpful targets

	Chapter 15.
	Tools needed for building or running
	15.1. Tools for pkgsrc builds
	15.2. Tools needed by packages
	15.3. Tools provided by platforms

	Chapter 16.
	Making your package work
	16.1. General operation
	16.1.1. How to pull in variables from /etc/mk.conf
	16.1.2. Where to install documentation
	16.1.3. Restricted packages
	16.1.4. Handling dependencies
	16.1.5. Handling conflicts with other packages
	16.1.6. Packages that cannot or should not be built
	16.1.7. Packages which should not be deleted, once installed
	16.1.8. Handling packages with security problems
	16.1.9. How to handle compiler bugs
	16.1.10. How to handle incrementing versions when fixing an existing package
	16.1.11. Portability of packages
	16.1.11.1. ${INSTALL}, ${INSTALLDATADIR}, ...

	16.2. Possible downloading issues
	16.2.1. Packages whose distfiles aren't available for plain downloading
	16.2.2. How to handle modified distfiles with the 'old' name

	16.3. Configuration gotchas
	16.3.1. Shared libraries libtool
	16.3.2. Using libtool on GNU packages that already support libtool
	16.3.3. GNU Autoconf/Automake

	16.4. Building the package
	16.4.1. CPP defines
	16.4.1.1. CPP defines for operating systems
	16.4.1.2. CPP defines for CPUs
	16.4.1.3. CPP defines for compilers

	16.4.2. Examples of CPP defines for some platforms
	16.4.3. Getting a list of CPP defines

	16.5. Package specific actions
	16.5.1. User interaction
	16.5.2. Handling licenses
	16.5.3. Installing score files
	16.5.4. Packages containing perl scripts
	16.5.5. Packages with hardcoded paths to other interpreters
	16.5.6. Packages installing perl modules
	16.5.7. Packages installing info files
	16.5.8. Packages installing man pages
	16.5.9. Packages installing GConf2 data files
	16.5.10. Packages installing scrollkeeper data files
	16.5.11. Packages installing X11 fonts
	16.5.12. Packages installing GTK2 modules
	16.5.13. Packages installing SGML or XML data
	16.5.14. Packages installing extensions to the MIME database
	16.5.15. Packages using intltool
	16.5.16. Packages installing startup scripts
	16.5.17. Packages installing TeX modules

	16.6. Feedback to the author

	Chapter 17.
	Debugging
	Chapter 18.
	Submitting and Committing
	18.1. Submitting your packages
	18.2. General notes when adding, updating, or removing packages
	18.3. Committing: Importing a package into CVS
	18.4. Updating a package to a newer version
	18.5. Moving a package in pkgsrc

	Chapter 19.
	Porting pkgsrc
	19.1. Porting pkgsrc to a new operating system
	19.2. Adding support for a new compiler

	Appendix A.
	A simple example package: bison
	A.1. files
	A.1.1. Makefile
	A.1.2. DESCR
	A.1.3. PLIST
	A.1.4. Checking a package with pkglint

	A.2. Steps for building, installing, packaging

	Appendix B.
	Build logs
	B.1. Building figlet
	B.2. Packaging figlet

	Appendix C.
	Layout of the FTP server's package archive
	Appendix D.
	Editing guidelines for the pkgsrc guide
	D.1. Targets
	D.2. Procedure

