
The pkgsrc guide

Documentation on the NetBSD packages
system
(2006/02/18)

Alistair Crooks
agc@NetBSD.org

Hubert Feyrer
hubertf@NetBSD.org

The pkgsrc Developers

The pkgsrc guide: Documentation on the NetBSD packages syst em
by Alistair Crooks, Hubert Feyrer, The pkgsrc Developers

Published 2006/02/18 01:46:43
Copyright © 1994-2005 The NetBSD Foundation, Inc

Information about using the NetBSD package system (pkgsrc)from both a user view for installing packages as well
as from a pkgsrc developers’ view for creating new packages.

Table of Contents
1. What is pkgsrc?..1

1.1. Introduction...1
1.2. Overview...1
1.3. Terminology..2
1.4. Typography...3

I. The pkgsrc user’s guide...1

2. Where to get pkgsrc and how to keep it up-to-date..2
2.1. As tar file...2
2.2. Via SUP...2
2.3. Via CVS...2
2.4. Keeping pkgsrc up-to-date via CVS..3

3. Using pkgsrc on systems other than NetBSD..4
3.1. Bootstrapping pkgsrc...4
3.2. Platform-specific notes..5

3.2.1. Darwin (Mac OS X)..5
3.2.1.1. Using a disk image...5
3.2.1.2. Using a UFS partition...5

3.2.2. FreeBSD..6
3.2.3. Interix..6

3.2.3.1. When installing Interix/SFU..6
3.2.3.2. What to do if Interix/SFU is already installed..7
3.2.3.3. Important notes for using pkgsrc..7
3.2.3.4. Limitations of the Interix platform...8
3.2.3.5. Known issues for pkgsrc on Interix..9

3.2.4. IRIX..9
3.2.5. Linux...10
3.2.6. OpenBSD..10
3.2.7. Solaris...11

3.2.7.1. If you are using gcc..11
3.2.7.2. If you are using Sun WorkShop...11
3.2.7.3. Buildling 64-bit binaries with SunPro..12
3.2.7.4. Common problems...12

4. Using pkgsrc..14
4.1. Using binary packages...14

4.1.1. Finding binary packages...14
4.1.2. Installing binary packages...14
4.1.3. A word of warning..15

4.2. Building packages from source...15
4.2.1. Requirements..15
4.2.2. Fetching distfiles...15
4.2.3. How to build and install..16
4.2.4. Selecting the compiler...17

5. Configuring pkgsrc...19
5.1. General configuration..19
5.2. Variables affecting the build process...19

iii

5.3. Developer/advanced settings...20
5.4. Selecting Build Options...20

6. Creating binary packages...22
6.1. Building a single binary package..22
6.2. Settings for creation of binary packages...22
6.3. Doing a bulk build of all packages..22

6.3.1. Configuration..22
6.3.1.1.build.conf ..22
6.3.1.2. /etc/mk.conf..23
6.3.1.3.pre-build.local ..23

6.3.2. Other environmental considerations...24
6.3.3. Operation...24
6.3.4. What it does..24
6.3.5. Disk space requirements...25
6.3.6. Setting up a sandbox for chrooted builds..25
6.3.7. Building a partial set of packages...26
6.3.8. Uploading results of a bulk build..27

6.4. Creating a multiple CD-ROM packages collection...28
6.4.1. Example of cdpack..28

7. Frequently Asked Questions..30
7.1. Are there any mailing lists for pkg-related discussion?..30
7.2. Where’s the pkgviews documentation?...30
7.3. Utilities for package management (pkgtools)..30
7.4. How to use pkgsrc as non-root..31
7.5. How to resume transfers when fetching distfiles?...32
7.6. How can I install/use XFree86 from pkgsrc?..32
7.7. How can I install/use X.org from pkgsrc?...32
7.8. How to fetch files from behind a firewall..32
7.9. How do I tellmake fetchto do passive FTP?...33
7.10. How to fetch all distfiles at once...33
7.11. What does “Don’t know how to make /usr/share/tmac/tmac.andoc” mean?.................34
7.12. What does “Could not find bsd.own.mk” mean?...34
7.13. Using ’sudo’ with pkgsrc...34
7.14. How do I change the location of configuration files?..34
7.15. Automated security checks..35

II. The pkgsrc developer’s guide..36

8. Package components - files, directories and contents..37
8.1.Makefile ..37
8.2.distinfo ..39
8.3. patches/*..40
8.4. Other mandatory files..40
8.5. Optional files...41
8.6.work * ..41
8.7.files/ * ..41

9. Programming inMakefile s..42
9.1.Makefile variables..42

9.1.1. Naming conventions..43

iv

9.2. Code snippets...43
9.2.1. Adding things to a list...43
9.2.2. Converting an internal list into an external list...43
9.2.3. Passing variables to a shell command...44
9.2.4. Quoting guideline..44
9.2.5. Workaround for a bug in BSD Make..45

10. PLIST issues..46
10.1. RCS ID..46
10.2. Semi-automaticPLIST generation..46
10.3. Tweaking output ofmake print-PLIST ...46
10.4. Variable substitution in PLIST..46
10.5. Man page compression..47
10.6. Changing PLIST source withPLIST_SRC..47
10.7. Platform-specific and differing PLISTs...48
10.8. Sharing directories between packages...48

11. Buildlink methodology..50
11.1. Converting packages to use buildlink3..50
11.2. Writingbuildlink3.mk files..51

11.2.1. Anatomy of a buildlink3.mk file...51
11.2.2. UpdatingBUILDLINK_DEPENDS.pkg in buildlink3.mk files.....................53

11.3. Writingbuiltin.mk files ..53
11.3.1. Anatomy of abuiltin.mk file..54
11.3.2. Global preferences for native or pkgsrc software...55

12. The pkginstall framework..56
12.1. Files and directories outside the installation prefix...56

12.1.1. Directory manipulation...56
12.1.2. File manipulation..57

12.2. Configuration files...57
12.2.1. HowPKG_SYSCONFDIRis set..57
12.2.2. Telling the software where configuration files are..58
12.2.3. Patching installations..58
12.2.4. Disabling handling of configuration files..59

12.3. System startup scripts..59
12.3.1. Disabling handling of system startup scripts..59

12.4. System users and groups...60
12.5. System shells...60

12.5.1. Disabling shell registration...60
12.6. Fonts..60

12.6.1. Disabling automatic update of the fonts databases...61
13. Options handling..62

13.1. Global default options...62
13.2. Converting packages to usebsd.options.mk ..62
13.3. Option Names..64

14. The build process...65
14.1. Introduction...65
14.2. Program location...65
14.3. Directories used during the build process..66
14.4. Running a phase..67

v

14.5. Thefetchphase..67
14.6. Thechecksumphase..67
14.7. Theextractphase...67
14.8. Thepatchphase...68
14.9. Thetoolsphase..68
14.10. Thewrapperphase..68
14.11. Theconfigurephase...68
14.12. Thebuild phase..69
14.13. Thetestphase..69
14.14. Theinstall phase..69
14.15. Thepackagephase...71
14.16. Other helpful targets..71

15. Tools needed for building or running...76
15.1. Tools for pkgsrc builds..76
15.2. Tools needed by packages...76
15.3. Tools provided by platforms..77

16. Making your package work..78
16.1. General operation..78

16.1.1. How to pull in variables from /etc/mk.conf..78
16.1.2. Where to install documentation..78
16.1.3. Restricted packages...78
16.1.4. Handling dependencies...79
16.1.5. Handling conflicts with other packages..81
16.1.6. Packages that cannot or should not be built..81
16.1.7. Packages which should not be deleted, once installed......................................81
16.1.8. Handling packages with security problems..82
16.1.9. How to handle compiler bugs...82
16.1.10. How to handle incrementing versions when fixing an existing package........82
16.1.11. Portability of packages..82

16.1.11.1. ${INSTALL}, ${INSTALL_DATA_DIR},83
16.2. Possible downloading issues...83

16.2.1. Packages whose distfiles aren’t available for plaindownloading.....................83
16.2.2. How to handle modified distfiles with the ’old’ name......................................83

16.3. Configuration gotchas..83
16.3.1. Shared libraries - libtool..84
16.3.2. Using libtool on GNU packages that already support libtool...........................85
16.3.3. GNU Autoconf/Automake..85

16.4. Building the package...86
16.4.1. CPP defines...86

16.4.1.1. CPP defines for operating systems...86
16.4.1.2. CPP defines for CPUs..87
16.4.1.3. CPP defines for compilers..87

16.4.2. Examples of CPP defines for some platforms...87
16.4.3. Getting a list of CPP defines...88

16.5. Package specific actions..88
16.5.1. User interaction...88
16.5.2. Handling licenses..88
16.5.3. Installing score files..89

vi

16.5.4. Packages containing perl scripts...90
16.5.5. Packages with hardcoded paths to other interpreters..90
16.5.6. Packages installing perl modules..90
16.5.7. Packages installing info files...90
16.5.8. Packages installing man pages..91
16.5.9. Packages installing GConf2 data files...91
16.5.10. Packages installing scrollkeeper data files..92
16.5.11. Packages installing X11 fonts...92
16.5.12. Packages installing GTK2 modules..92
16.5.13. Packages installing SGML or XML data..93
16.5.14. Packages installing extensions to the MIME database...................................93
16.5.15. Packages using intltool...93
16.5.16. Packages installing startup scripts..94
16.5.17. Packages installing TeX modules...94

16.6. Feedback to the author...94
17. Debugging..95
18. Submitting and Committing...97

18.1. Submitting your packages...97
18.2. General notes when adding, updating, or removing packages......................................97
18.3. Committing: Importing a package into CVS...97
18.4. Updating a package to a newer version...98
18.5. Moving a package in pkgsrc..98

19. Porting pkgsrc..100
19.1. Porting pkgsrc to a new operating system...100
19.2. Adding support for a new compiler...100

A. A simple example package: bison..102

A.1. files...102
A.1.1. Makefile...102
A.1.2. DESCR..102
A.1.3. PLIST...102
A.1.4. Checking a package withpkglint ..103

A.2. Steps for building, installing, packaging..103

B. Build logs..106

B.1. Building figlet...106
B.2. Packaging figlet..107

C. Layout of the FTP server’s package archive..109

D. Editing guidelines for the pkgsrc guide..111

D.1. Targets..111
D.2. Procedure..111

vii

Chapter 1.

What is pkgsrc?

1.1. Introduction
There is a lot of software freely available for Unix-based systems, which usually runs on NetBSD and
other Unix-flavoured systems, too, sometimes with some modifications. The NetBSD Packages
Collection (pkgsrc) incorporates any such changes necessary to make that software run, and makes the
installation (and de-installation) of the software package easy by means of a single command.

Once the software has been built, it is manipulated with thepkg_* tools so that installation and
de-installation, printing of an inventory of all installedpackages and retrieval of one-line comments or
more verbose descriptions are all simple.

pkgsrc currently contains several thousand packages, including:

• www/apache - The Apache web server

• www/mozilla - The Mozilla web browser

• meta-pkgs/gnome - The GNOME Desktop Environment

• meta-pkgs/kde3 - The K Desktop Environment

...just to name a few.

pkgsrc has built-in support for handling varying dependencies, such as pthreads and X11, and extended
features such as IPv6 support on a range of platforms.

pkgsrc was derived from FreeBSD’s ports system, and initially developed for NetBSD only. Since then,
pkgsrc has grown a lot, and now supports the following platforms:

• Darwin (http://developer.apple.com/darwin/) (Mac OS X (http://www.apple.com/macosx/))

• DragonFly BSD (http://www.DragonFlyBSD.org/)

• FreeBSD (http://www.FreeBSD.org/)

• Microsoft Windows, via Interix (http://www.microsoft.com/windows/sfu/)

• IRIX (http://www.sgi.com/software/irix6.5/)

• Linux (http://www.linux.org/)

• NetBSD (http://www.NetBSD.org/) (of course)

• Tru64 (http://h30097.www3.hp.com/) (Digital UNIX, OSF1)

• OpenBSD (http://www.openbsd.org/)

• Solaris (http://www.sun.com/solaris/)

1

Chapter 1. What is pkgsrc?

1.2. Overview
This document is divided into two parts. The first,The pkgsrc user’s guide, describes how one can use
one of the packages in the Package Collection, either by installing a precompiled binary package, or by
building one’s own copy using the NetBSD package system. Thesecond part,
The pkgsrc developer’s guide, explains how to prepare a package so it can be easily built byother
NetBSD users without knowing about the package’s building details.

This document is available in various formats:

• HTML (index.html)

• PDF (pkgsrc.pdf)

• PS (pkgsrc.ps)

• TXT (pkgsrc.txt)

1.3. Terminology
There has been a lot of talk about “ports”, “packages”, etc. so far. Here is a description of all the
terminology used within this document.

Package

A set of files and building instructions that describe what’snecessary to build a certain piece of
software using pkgsrc. Packages are traditionally stored under/usr/pkgsrc .

The NetBSD package system

This is the former name of “pkgsrc”. It is part of the NetBSD operating system and can be
bootstrapped to run on non-NetBSD operating systems as well. It handles building (compiling),
installing, and removing of packages.

Distfile

This term describes the file or files that are provided by the author of the piece of software to
distribute his work. All the changes necessary to build on NetBSD are reflected in the
corresponding package. Usually the distfile is in the form ofa compressed tar-archive, but other
types are possible, too. Distfiles are usually stored below/usr/pkgsrc/distfiles .

Port

This is the term used by FreeBSD and OpenBSD people for what wecall a package. In NetBSD
terminology, “port” refers to a different architecture.

Precompiled/binary package

A set of binaries built with pkgsrc from a distfile and stuffedtogether in a single.tgz file so it can
be installed on machines of the same machine architecture without the need to recompile. Packages
are usually generated in/usr/pkgsrc/packages ; there is also an archive on ftp.NetBSD.org
(ftp://ftp.NetBSD.org/pub/NetBSD/packages/).

2

Chapter 1. What is pkgsrc?

Sometimes, this is referred to by the term “package” too, especially in the context of precompiled
packages.

Program

The piece of software to be installed which will be constructed from all the files in the distfile by the
actions defined in the corresponding package.

1.4. Typography
When giving examples for commands, shell prompts are used toshow if the command should/can be
issued as root, or if “normal” user privileges are sufficient. We use a# for root’s shell prompt, and a%for
users’ shell prompt, assuming they use the C-shell or tcsh.

3

I. The pkgsrc user’s guide

Chapter 2.

Where to get pkgsrc and how to
keep it up-to-date

There are three ways to get pkgsrc. Either as a tar file, via SUP, or via CVS. All three ways are described
here.

2.1. As tar file
To get pkgsrc going, you need to get the pkgsrc.tar.gz file from ftp.NetBSD.org
(ftp://ftp.NetBSD.org/pub/NetBSD/NetBSD-current/tar_files/pkgsrc.tar.gz) and unpack it into
/usr/pkgsrc .

2.2. Via SUP
As an alternative to the tar file, you can get pkgsrc via the Software Update Protocol, SUP. To do so,
make sure your supfile has a line

release=pkgsrc

in it, see the examples in/usr/share/examples/supfiles , and that the/usr/pkgsrc directory
exists. Then, simply runsup -v/path/to/your/supfile.

2.3. Via CVS
To get pkgsrc via CVS, make sure you have “cvs” installed. To do an initial (full) checkout of pkgsrc, do
the following steps:

% setenv CVSROOT anoncvs@anoncvs.NetBSD.org:/cvsroot

% setenv CVS_RSH ssh

% cd /usr

% cvs checkout -P pkgsrc

This will create thepkgsrc directory in your/usr , and all the package source will be stored under
/usr/pkgsrc . To update pkgsrc after the initial checkout, make sure you haveCVS_RSHset as above,
then do:

% cd /usr/pkgsrc

% cvs -q update -dP

2

Chapter 2. Where to get pkgsrc and how to keep it up-to-date

Please also note that it is possible to have multiple copies of the pkgsrc hierarchy in use at any one time -
all work is done relatively within the pkgsrc tree.

2.4. Keeping pkgsrc up-to-date via CVS
If your copy of pkgsrc contains a lot ofCVSdirectories, you can update it using the cvs(1) program. First,
cd to the top level directory of pkgsrc. Then runcvs -q update -dP, and you’re done.

If that doesn’t work and the fileCVS/Root contains the string “:pserver:”, you have to runcvs loginonce
to get known to the NetBSD CVS server. Thecvsutility will then ask you for a password. Just enter
“anoncvs”. Then try again to update.

3

Chapter 3.

Using pkgsrc on systems other
than NetBSD

3.1. Bootstrapping pkgsrc
For operating systems other than NetBSD, we provide a bootstrap kit to build the required tools to use
pkgsrc on your platform. Besides support for native NetBSD,pkgsrc and the bootstrap kit have support
for the following operating systems:

• Darwin (Mac OS X)

• DragonFly BSD

• FreeBSD

• Interix (Windows 2000, XP, 2003)

• IRIX

• Linux

• OpenBSD

• Solaris

• Tru64 (Digital UNIX/OSF1)

Support for other platforms is under development.

Installing the bootstrap kit should be as simple as:

env CVS_RSH=ssh cvs -d anoncvs@anoncvs.NetBSD.org:/cvsroot checkout pkgsrc

cd pkgsrc/bootstrap

./bootstrap

SeeChapter 2for other ways to get pkgsrc before bootstrapping. The givenbootstrap command will use
the defaults of/usr/pkg for theprefixwhere programs will be installed in, and/var/db/pkg for the
package database directory where pkgsrc will do its internal bookkeeping. However, these can also be set
using command-line arguments.

Binary packages for the pkgsrc tools and an initial set of packages is available for supported platforms.
An up-to-date list of these can be found on www.pkgsrc.org (http://www.pkgsrc.org/). Note that this only
works for privileged builds that install into/usr/pkg .

Note: The bootstrap installs a bmake tool. Use this bmake when building via pkgsrc. For examples
in this guide, use bmake instead of “make”.

4

Chapter 3. Using pkgsrc on systems other than NetBSD

3.2. Platform-specific notes
Here are some platform-specific notes you should be aware of.

3.2.1. Darwin (Mac OS X)

Darwin 5.x and 6.x are supported. There are two methods of using pkgsrc on Mac OS X, by using a
disk image, or aUFS partition.

Before you start, you will need to download and install the Mac OS X Developer Tools from Apple’s
Developer Connection. See http://developer.apple.com/macosx/ for details. Also, make sure you install
X11 for Mac OS X and the X11 SDK from http://www.apple.com/macosx/x11/download/ if you intend
to build packages that use the X11 Window System.

If you already have a UFS partition, or have a spare partitionthat you can format as UFS, it is
recommended to use that instead of the disk image. It’ll be somewhat faster and will mount
automatically at boot time, where you must manually mount a disk image.

Note: You cannot use a HFS+ file system for pkgsrc, because pkgsrc currently requires the file
system to be case-sensitive, and HFS+ is not.

3.2.1.1. Using a disk image

Create the disk image:

cd pkgsrc/bootstrap

./ufsdiskimage create ~/Documents/NetBSD 512 # megabytes - season to taste
./ufsdiskimage mount ~/Documents/NetBSD

sudo chown ‘id -u‘:‘id -g‘ /Volumes/NetBSD

That’s it!

3.2.1.2. Using a UFS partition

By default,/usr will be on your root file system, normally HFS+. It is possibleto use the defaultprefix
of /usr/pkg by symlinking/usr/pkg to a directory on a UFS file system. Obviously, another symlink
is required if you want to place the package database directory outside theprefix. e.g.

./bootstrap --pkgdbdir /usr/pkg/pkgdb

If you created your partitions at the time of installing Mac OS X and formatted the target partition as
UFS, it should automatically mount on/Volumes/<volume name> when the machine boots. If you are
(re)formatting a partition as UFS, you need to ensure that the partition map correctly reflects
“Apple_UFS” and not “Apple_HFS”.

5

Chapter 3. Using pkgsrc on systems other than NetBSD

The problem is that none of the disk tools will let you touch a disk that is booted from. You can unmount
the partition, but even if you newfs it, the partition type will be incorrect and the automounter won’t
mount it. It can be mounted manually, but it won’t appear in Finder.

You’ll need to boot off of the OS X Installation (User) CD. When the Installation program starts, go up
to the menu and select Disk Utility. Now, you will be able to select the partition you want to be UFS, and
Format it Apple UFS. Quit the Disk Utility, quit the installer which will reboot your machine. The new
UFS file system will appear in Finder.

Be aware that the permissions on the new file system will be writable by root only.

This note is as of 10.2 (Jaguar) and applies to earlier versions. Hopefully Apple will fix Disk Utility in
10.3 (Panther).

3.2.2. FreeBSD

FreeBSD 4.7 and 5.0 have been tested and are supported, otherversions may work.

Care should be taken so that the tools that this kit installs do not conflict with the FreeBSD userland
tools. There are several steps:

1. FreeBSD stores its ports pkg database in/var/db/pkg . It is therefore recommended that you
choose a different location (e.g./usr/pkgdb) by using the --pkgdbdir option to the bootstrap script.

2. If you do not intend to use the FreeBSD ports tools, it’s probably a good idea to move them out of
the way to avoid confusion, e.g.

cd /usr/sbin

mv pkg_add pkg_add.orig

mv pkg_create pkg_create.orig

mv pkg_delete pkg_delete.orig

mv pkg_info pkg_info.orig

3. An example/etc/mk.conf file will be placed in/etc/mk.conf.example file when you use the
bootstrap script.

3.2.3. Interix

Interix is a POSIX-compatible subsystem for the Windows NT kernel, providing a Unix-like
environment with a tighter kernel integration than available with Cygwin. It is part of the Windows
Services for Unix package, available for free for any licensed copy of Windows 2000, XP (not including
XP Home), or 2003. SFU can be downloaded from http://www.microsoft.com/windows/sfu/.

Services for Unix 3.5, current as of this writing, has been tested. 3.0 or 3.1 may work, but are not
officially supported. (The main difference in 3.0/3.1 is lack of pthreads.)

3.2.3.1. When installing Interix/SFU

At an absolute minimum, the following packages must be installed from the Windows Services for Unix
3.5 distribution in order to use pkgsrc:

6

Chapter 3. Using pkgsrc on systems other than NetBSD

• Utilities -> Base Utilities

• Interix GNU Components -> (all)

• Remote Connectivity

• Interix SDK

When using pkgsrc on Interix, DO NOT install the Utilities subcomponent "UNIX Perl". That is Perl 5.6
without shared module support, installed to /usr/local, and will only cause confusion. Instead, install Perl
5.8 from pkgsrc (or from a binary package).

The Remote Connectivity subcomponent "Windows Remote Shell Service" does not need to be installed,
but Remote Connectivity itself should be installed in orderto have a working inetd.

During installation you may be asked whether to enable setuid behavior for Interix programs, and
whether to make pathnames default to case-sensitive. Setuid should be enabled, and case-sensitivity
MUST be enabled. (Without case-sensitivity, a large numberof packages including perl will not build.)

NOTE: Newer Windows service packs change the way binary execution works (via the Data Execution
Prevention feature). In order to use pkgsrc and other gcc-compiled binaries reliably, a hotfix containing
POSIX.EXE, PSXDLL.DLL, PSXRUN.EXE, and PSXSS.EXE (899522or newer) must be installed.
Hotfixes are available from Microsoft through a support contract; however, a NetBSD developer has
made most Interix hotfixes available for personal use from http://www.duh.org/interix/hotfixes.php.

3.2.3.2. What to do if Interix/SFU is already installed

If SFU is already installed and you wish to alter these settings to work with pkgsrc, note the following
things.

• To uninstall UNIX Perl, use Add/Remove Programs, select Microsoft Windows Services for UNIX,
then click Change. In the installer, choose Add or Remove, then uncheck Utilities->UNIX Perl.

• To enable case-sensitivity for the file system, run REGEDIT.EXE, and change the following registry
key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\kernel

Set the DWORD value "obcaseinsensitive" to 0; then reboot.

• To enable setuid binaries (optional), run REGEDIT.EXE, andchange the following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Services for UNIX

Set the DWORD value "EnableSetuidBinaries" to 1; then reboot.

3.2.3.3. Important notes for using pkgsrc

The package manager (either the pkgsrc "su" user, or the userrunning "pkg_add") must be a member of
the local Administrators group. Such a user must also be usedto run the bootstrap. This is slightly
relaxed from the normal pkgsrc requirement of "root".

The package manager should use a umask of 002. "make install"will automatically complain if this is
not the case. This ensures that directories written in /var/db/pkg are Administrators-group writeable.

7

Chapter 3. Using pkgsrc on systems other than NetBSD

The popular Interix binary packages from http://www.interopsystems.com/ use an older version of
pkgsrc’s pkg_* tools. Ideally, these should NOT be used in conjunction with pkgsrc. If you choose to use
them at the same time as the pkgsrc packages, ensure that you use the proper pkg_* tools for each type of
binary package.

The TERM setting used for DOS-type console windows (including those invoked by the csh and ksh
startup shortcuts) is "interix". Most systems don’t have a termcap/terminfo entry for it, but the following
.termcap entry provides adequate emulation in most cases:

interix:kP=\E[S:kN=\E[T:kH=\E[U:dc@:DC@:tc=pcansi:

3.2.3.4. Limitations of the Interix platform

Though Interix suffices as a familiar and flexible substitutefor a full Unix-like platform, it has some
drawbacks that should be noted for those desiring to make themost of Interix.

• X11:

Interix comes with the standard set of X11R6 client libraries, and can run X11 based applications, but
it doesnot come with an X server. Some options are StarNet X-Win32
(http://www.starnet.com/products/xwin32/), Hummingbird Exceed
(http://connectivity.hummingbird.com/products/nc/exceed/) (available in a trimmed version for Interix
from Interop Systems as the Interop X Server (http://www.interopsystems.com/InteropXserver.htm)),
and the free X11 server included with Cygwin (http://x.cygwin.com/).

Also, StarNet Communications has graciously provided a free version of their X-Win32 product that
accepts connections only from localhost: X-Win32 LX
(http://www.starnet.com/xwin32LX/get_xwin32LX.htm),recommended by the maintainer of Interix
pkgsrc support.

• X11 acceleration:

Because Interix runs in a completely different NT subsystemfrom Win32 applications, it does not
currently support various X11 protocol extensions for acceleration (such as MIT-SHM or DGA). Most
interactive applications to a local X server will run reasonably fast, but full motion video and other
graphics intensive applications may require a faster-than-expected CPU.

• Audio:

Interix has no native support for audio output. For audio support, pkgsrc uses theesoundclient/server
audio system on Interix. Unlike on most platforms, theaudio/esound package doesnot contain the
esdserver component. To output audio via an Interix host, theemulators/cygwin_esound package
must also be installed.

• CD/DVDs, USB, and SCSI:

Direct device access is not currently supported in Interix,so it is not currently possible to access
CD/DVD drives, USB devices, or SCSI devices through non-filesystem means. Among other things,
this makes it impossible to use Interix directly for CD/DVD burning.

• Tape drives:

8

Chapter 3. Using pkgsrc on systems other than NetBSD

Due to the same limitations as for CD-ROMs and SCSI devices, tape drives are also not directly
accessible in Interix. However, support is in work to make tape drive access possible by using Cygwin
as a bridge (similarly to audio bridged via Cygwin’s esound server).

3.2.3.5. Known issues for pkgsrc on Interix

It is not necessary, in general, to have a "root" user on the Windows system; any member of the local
Administrators group will suffice. However, some packages currently assume that the user named "root"
is the privileged user. To accommodate these, you may createsuch a user; make sure it is in the local
group Administrators (or your language equivalent).

"pkg_add" creates directories of mode 0755, not 0775, in $PKG_DBDIR. For the time being, install
packages as the local Administrator (or your language equivalent), or run the following command after
installing a package to work around the issue:

chmod -R g+w $PKG_DBDIR

3.2.4. IRIX

You will need a working C compiler, either gcc or SGI’s MIPS and MIPSpro compiler (cc/c89). Please
set theCCenvironment variable according to your preference. If you do not have a license for the
MIPSpro compiler suite, you can download a gcc tardist file from http://freeware.sgi.com/.

Please note that you will need IRIX 6.5.17 or higher, as this is the earliest version of IRIX providing
support for if_indextoname(3), if_nametoindex(3), etc.

At this point in time, pkgsrc only supports one ABI at a time. That is, you can not switch between the old
32-bit ABI, the new 32-bit ABI and the 64-bit ABI. If you startout using "abi=n32", that’s what all your
packages will be built with.

Therefore, please make sure that you have no conflictingCFLAGSin your environment or the
/etc/mk.conf . Particularly, make sure that you do not try to link n32 object files with lib64 or vice
versa. Check your/etc/compiler.defaults !

If you have the actual pkgsrc tree mounted via NFS from a different host, please make sure to set
WRKOBJDIRto a local directory, as it appears that IRIX linker occasionally runs into issues when trying
to link over a network-mounted file system.

The bootstrapping process should set all the right options for programs such as imake(1), but you may
want to set some options depending on your local setup. Please seepkgsrc/mk/defaults/mk.conf

and, of course, your compiler’s man pages for details.

If you are using SGI’s MIPSPro compiler, please set

PKGSRC_COMPILER= mipspro

in /etc/mk.conf . Otherwise, pkgsrc will assume you are using gcc and may end up passing invalid
flags to the compiler. Note that bootstrap should create an appropriatemk.conf.example by default.

If you have both the MIPSPro compiler chain installed as wellas gcc, but want to make sure that
MIPRPro is used, please set yourPATHto not include the location of gcc (often/usr/freeware/bin),
and (important) pass the ’--preserve-path’ flag.

9

Chapter 3. Using pkgsrc on systems other than NetBSD

3.2.5. Linux

Some versions of Linux (for example Debian GNU/Linux) need either libtermcap or libcurses
(libncurses). Installing the distributions libncurses-dev package (or equivalent) should fix the problem.

pkgsrc supports both gcc (GNU Compiler Collection) and icc (Intel C++ Compiler). gcc is the default.
icc 8.0 and 8.1 on i386 have been tested.

To bootstrap using icc, assuming the default icc installation directory:

env CC=/opt/intel_cc_80/bin/icc LDFLAGS=-static-libcx a \
ac_cv___attribute__=yes ./bootstrap

Note: icc 8.1 needs the ‘-i-static’ argument instead of -static-libcxa.

icc supports __attribute__, but the GNU configure test uses anested function, which icc does not
support. #undef’ing __attribute__ has the unfortunate side-effect of breaking many of the Linux header
files, which cannot be compiled properly without __attribute__. The test must be overridden so that
__attribute__ is assumed supported by the compiler.

After bootstrapping, you should setPKGSRC_COMPILERin /etc/mk.conf :

PKGSRC_COMPILER= icc

The default installation directory for icc is/opt/intel_cc_80 , which is also the pkgsrc default. If you
have installed it into a different directory, setICCBASEin /etc/mk.conf :

ICCBASE= /opt/icc

pkgsrc uses the static linking method of the runtime libraries provided by icc, so binaries can be run on
other systems which do not have the shared libraries installed.

Libtool, however, extracts a list of libraries from the ld(1) command run when linking a C++ shared
library and records it, throwing away the -Bstatic and -Bdynamic options interspersed between the
libraries. This means that libtool-linked C++ shared libraries will have a runtime dependency on the icc
libraries until this is fixed in libtool.

3.2.6. OpenBSD

OpenBSD 3.0 and 3.2 are tested and supported.

Care should be taken so that the tools that this kit installs do not conflict with the OpenBSD userland
tools. There are several steps:

1. OpenBSD stores its ports pkg database in/var/db/pkg . It is therefore recommended that you
choose a different location (e.g./usr/pkgdb) by using the --pkgdbdir option to the bootstrap script.

2. If you do not intend to use the OpenBSD ports tools, it’s probably a good idea to move them out of
the way to avoid confusion, e.g.

cd /usr/sbin

mv pkg_add pkg_add.orig

10

Chapter 3. Using pkgsrc on systems other than NetBSD

mv pkg_create pkg_create.orig

mv pkg_delete pkg_delete.orig

mv pkg_info pkg_info.orig

3. An example/etc/mk.conf file will be placed in/etc/mk.conf.example file when you use the
bootstrap script. OpenBSD’s make program uses/etc/mk.conf as well. You can work around this
by enclosing all the pkgsrc-specific parts of the file with:

.ifdef BSD_PKG_MK
pkgsrc stuff, e.g. insert defaults/mk.conf or similar her e
.else
OpenBSD stuff
.endif

3.2.7. Solaris

Solaris 2.6 through 9 are supported on both x86 and sparc. Youwill need a working C compiler. Both
gcc 2.95.3 and Sun WorkShop 5 have been tested.

The following packages are required on Solaris 8 for the bootstrap process and to build packages.

• SUNWsprot

• SUNWarc

• SUNWbtool

• SUNWtoo

• SUNWlibm

Please note the use of GNU binutils on Solaris isnot supported.

Whichever compiler you use, please ensure the compiler tools and your $prefix are in yourPATH. This
includes/usr/ccs/{bin,lib} and e.g./usr/pkg/{bin,sbin} .

3.2.7.1. If you are using gcc

It makes life much simpler if you only use the same gcc consistently for building all packages.

It is recommended that an external gcc be used only for bootstrapping, then either build gcc from
lang/gcc or install a binary gcc package, then remove gcc used during bootstrapping.

Binary packages of gcc can be found through
http://www.sun.com/bigadmin/common/freewareSearch.html.

3.2.7.2. If you are using Sun WorkShop

You will need at least the following packages installed (from WorkShop 5.0)

• SPROcc - Sun WorkShop Compiler C 5.0

• SPROcpl - Sun WorkShop Compiler C++ 5.0

• SPROild - Sun WorkShop Incremental Linker

11

Chapter 3. Using pkgsrc on systems other than NetBSD

• SPROlang - Sun WorkShop Compilers common components

You should setCC, CXXand optionally,CPPin /etc/mk.conf , e.g.:

CC= cc
CXX= CC
CPP= /usr/ccs/lib/cpp

3.2.7.3. Buildling 64-bit binaries with SunPro

Building 64-bit binaries is a little trickier. First, you need to bootstrap pkgsrc in 64-bit mode. One
problem here is that while building one of the programs in thebootstrap kit (bmake), theCFLAGS

variable is not honored, even if it is set in the environment.To work around this bug, you can create a
simple shell script calledcc64 and put it somewhere in thePATH:

#! /bin/sh
exec /opt/SUNWspro/bin/cc -xtarget=ultra -xarch=v9 ${1+ "$@"}

Then, pass the definition forCCin the environment of thebootstrap command:

$ cd bootstrap

$ CC=cc64 ./bootstrap

After bootstrapping, there are two alternative ways, depending on whether you want to find bugs in
packages or get your system ready quickly. If you just want a running system, add the following lines to
yourmk.conf file:

CC= cc64
CXX= CC64
PKGSRC_COMPILER= sunpro

This way, all calls to the compiler will be intercepted by theabove wrapper and therefore get the
necessary ABI options automatically. (Don’t forget to create the shell scriptCC64, too.)

To find packages that ignore the user-specifiedCFLAGSandCXXFLAGS, add the following lines to your
mk.conf file:

CC= cc
CXX= CC
PKGSRC_COMPILER= sunpro
CFLAGS= -xtarget=ultra -xarch=v9
CXXFLAGS= -xtarget=ultra -xarch=v9
LDFLAGS= -xtarget=ultra -xarch=v9

Packages that don’t use the flags provided in the configuration file will try to build 32-bit binaries and
fail during linking. Detecting this is useful to prevent bugs on other platforms where the error would not
show up but pass silently.

12

Chapter 3. Using pkgsrc on systems other than NetBSD

3.2.7.4. Common problems

Sometimes, when usinglibtool , /bin/ksh crashes with a segmentation fault. The workaround is to use
another shell for the configure scripts, for example by installing shells/bash and adding the following
lines to yourmk.conf :

CONFIG_SHELL= ${LOCALBASE}/bin/bash
WRAPPER_SHELL= ${LOCALBASE}/bin/bash

13

Chapter 4.

Using pkgsrc

Basically, there are two ways of using pkgsrc. The first is to only install the package tools and to use
binary packages that someone else has prepared. This is the “pkg” in pkgsrc. The second way is to install
the “src” of pkgsrc, too. Then you are able to build your own packages, and you can still use binary
packages from someone else.

4.1. Using binary packages
To use binary packages, you need some tools to manage them. OnNetBSD, these tools are already
installed. On all other operating systems, you need to install them first. For the following platforms,
prebuilt versions of the package tools are available and cansimply be downloaded and unpacked in the/

directory:

Platform URL

Solaris 5.10 http://public.enst.fr/pkgsrc/packages/bootstrap-pkg sr

These prebuilt package tools use/usr/pkg for the base directory, and/var/db/pkg for the database of
installed packages. If you cannot use these directories forwhatever reasons (maybe because you’re not
root), you have to build the package tools yourself, which isexplained inSection 3.1.

4.1.1. Finding binary packages

To install binary packages, you first need to know from where to get them. You can get them on
CD-ROMs, DVDs, or via FTP or HTTP.

For NetBSD, the binary packages are made available onftp.NetBSD.org and its mirrors, in the
directory/pub/NetBSD/packages/ OSVERSION / ARCH/ . ForOSVERSION , you should insert the output
of uname -r, and forARCH the output ofuname -p.

For some other platforms, binary packages can be found at thefollowing locations:

Platform URL

Solaris 5.10 http://public.enst.fr/pkgsrc/packages/

In each of these directories, there is a subdirectoryAll that contains all the binary packages. Further,
there are subdirectories for categories that contain symbolic links that point to the actual binary package
in ../All . This directory layout is used for all package repositories, no matter if they are accessed via
HTTP, FTP, NFS, CD-ROM, or the local filesystem.

14

Chapter 4. Using pkgsrc

4.1.2. Installing binary packages

If you have the files on a CD-ROM or downloaded them to your harddisk, you can install them with the
following command (be sure tosu to root first):

pkg_add /path/to/package.tgz

If you have FTP access and you don’t want to download the packages via FTP prior to installation, you
can do this automatically by givingpkg_addan FTP URL:

pkg_add ftp://ftp.NetBSD.org/pub/NetBSD/packages/<OSVERSION>/<ARCH>/All/package.tgz

Note that any prerequisite packages needed to run the package in question will be installed, too,
assuming they are present where you install from.

To save some typing, you can set thePKG_PATHenvironment variable to a semicolon-separated list of
paths (including remote URLs); trailing slashes are not allowed.

Additionally to theAll directory there exists avulnerable directory to which binary packages with
known vulnerabilities are moved, since removing them couldcause missing dependencies. To use these
packages, add thevulnerable directory to yourPKG_PATH. However, you should run
security/audit-packages regularly, especially after installing new packages, and verify that the
vulnerabilities are acceptable for your configuration. An examplePKG_PATHwould be:
ftp://ftp.NetBSD.org/pub/NetBSD/packages/<OSVERSION >/<ARCH>/All;ftp://ftp.NetBSD.org/pub/NetBS

Please note that semicolon (’;’) is a shell meta-character,so you’ll probably have to quote it.

After you’ve installed packages, be sure to have/usr/pkg/bin and/usr/pkg/sbin in yourPATHso
you can actually start the just installed program.

4.1.3. A word of warning

Please pay very careful attention to the warnings expressedin the pkg_add(1) manual page about the
inherent dangers of installing binary packages which you did not create yourself, and the security holes
that can be introduced onto your system by indiscriminate adding of such files.

The same warning of course applies to every package you install from source when you haven’t
completely read and understood the source code of the package, the compiler that is used to build the
package and all the other tools that are involved.

4.2. Building packages from source
This assumes that the package is already in pkgsrc. If it is not, seePart II inThe pkgsrc guidefor
instructions how to create your own packages.

4.2.1. Requirements

To build packages from source on a NetBSD system the “comp” and the “text” distribution sets must be
installed. If you want to build X11-related packages the “xbase” and “xcomp” distribution sets are
required, too.

15

Chapter 4. Using pkgsrc

4.2.2. Fetching distfiles

The first step for building a package is downloading the distfiles (i.e. the unmodified source). If they have
not yet been downloaded, pkgsrc will fetch them automatically.

You can overwrite some of the major distribution sites to fit to sites that are close to your own. Have a
look atpkgsrc/mk/defaults/mk.conf to find some examples — in particular, look for the
MASTER_SORT, MASTER_SORT_REGEXandINET_COUNTRYdefinitions. This may save some of your
bandwidth and time.

You can change these settings either in your shell’s environment, or, if you want to keep the settings, by
editing the/etc/mk.conf file, and adding the definitions there.

If you don’t have a permanent Internet connection and you want to know which files to download,make
fetch-list will tell you what you’ll need. Put these distfiles into/usr/pkgsrc/distfiles .

4.2.3. How to build and install

Assuming that the distfile has been fetched (see previous section), become root and change into the
relevant directory and runmake.

Note: If using bootstrap or pkgsrc on a non-NetBSD system, use the pkgsrc bmake command
instead of “make” in the examples in this guide.

For example, type

% cd misc/figlet

% make

at the shell prompt to build the various components of the package, and

make install

to install the various components into the correct places onyour system. Installing the package on your
system requires you to be root. However, pkgsrc has ajust-in-time-sufeature, which allows you to only
become root for the actual installation step

Taking the figlet utility as an example, we can install it on our system by building as shown in
Appendix B.

The program is installed under the default root of the packages tree -/usr/pkg . Should this not
conform to your tastes, set theLOCALBASEvariable in your environment, and it will use that value as the
root of your packages tree. So, to use/usr/local , setLOCALBASE=/usr/local in your environment.
Please note that you should use a directory which is dedicated to packages and not shared with other
programs (i.e., do not try and useLOCALBASE=/usr). Also, you should not try to add any of your own
files or directories (such assrc/ , obj/ , or pkgsrc/) below theLOCALBASEtree. This is to prevent
possible conflicts between programs and other files installed by the package system and whatever else
may have been installed there.

Some packages look in/etc/mk.conf to alter some configuration options at build time. Have a lookat
pkgsrc/mk/defaults/mk.conf to get an overview of what will be set there by default. Environment

16

Chapter 4. Using pkgsrc

variables such asLOCALBASEcan be set in/etc/mk.conf to save having to remember to set them each
time you want to use pkgsrc.

Occasionally, people want to “look under the covers” to see what is going on when a package is building
or being installed. This may be for debugging purposes, or out of simple curiosity. A number of utility
values have been added to help with this.

1. If you invoke the make(1) command withPKG_DEBUG_LEVEL=2, then a huge amount of
information will be displayed. For example,

make patch PKG_DEBUG_LEVEL=2

will show all the commands that are invoked, up to and including the “patch” stage.

2. If you want to know the value of a certain make(1) definition, then theVARNAMEdefinition should be
used, in conjunction with the show-var target. e.g. to show the expansion of the make(1) variable
LOCALBASE:

% make show-var VARNAME=LOCALBASE

/usr/pkg
%

If you want to install a binary package that you’ve either created yourself (see next section), that you put
into pkgsrc/packages manually or that is located on a remoteFTP server, you can use the "bin-install"
target. This target will install a binary package - if available - via pkg_add(1), else do amake package.
The list of remote FTP sites searched is kept in the variableBINPKG_SITES, which defaults to
ftp.NetBSD.org. Any flags that should be added to pkg_add(1)can be put intoBIN_INSTALL_FLAGS.
Seepkgsrc/mk/defaults/mk.conf for more details.

A final word of warning: If you set up a system that has a non-standard setting forLOCALBASE, be sure
to set that before any packages are installed, as you can not use several directories for the same purpose.
Doing so will result in pkgsrc not being able to properly detect your installed packages, and fail
miserably. Note also that precompiled binary packages are usually built with the defaultLOCALBASEof
/usr/pkg , and that you shouldnot install any if you use a non-standardLOCALBASE.

4.2.4. Selecting the compiler

By default, pkgsrc will use GCC to build packages. This may beoverridden by setting the following
variables in /etc/mk.conf:

PKGSRC_COMPILER:

This is a list of values specifying the chain of compilers to invoke when building packages. Valid
values are:

• distcc : distributed C/C++ (chainable)

• ccache : compiler cache (chainable)

• gcc : GNU C/C++ Compiler

• mipspro : Silicon Graphics, Inc. MIPSpro (n32/n64)

• mipspro : Silicon Graphics, Inc. MIPSpro (o32)

17

Chapter 4. Using pkgsrc

• sunpro : Sun Microsystems, Inc. WorkShip/Forte/Sun ONE Studio

The default is “gcc ”. You can useccache and/ordistcc with an appropriatePKGSRC_COMPILER

setting, e.g. “ccache gcc ”. This variable should always be terminated with a value fora real
compiler.

GCC_REQD:

This specifies the minimum version of GCC to use when buildingpackages. If the system GCC
doesn’t satisfy this requirement, then pkgsrc will build and install one of the GCC packages to use
instead.

18

Chapter 5.

Configuring pkgsrc

5.1. General configuration
In this section, you can find some variables that apply to all pkgsrc packages. The preferred method of
setting these variables is by setting them in/etc/mk.conf .

• LOCALBASE: Where packages will be installed. The default is/usr/pkg . Do not mix binary packages
with differentLOCALBASEs!

• CROSSBASE: Where “cross” category packages will be installed. The default is
${LOCALBASE}/cross .

• X11BASE: Where X11 is installed on the system. The default is/usr/X11R6 .

• DISTDIR : Where to store the downloaded copies of the original sourcedistributions used for building
pkgsrc packages. The default is${PKGSRCDIR}/distfiles .

• MASTER_SITE_OVERRIDE: If set, override the packages’MASTER_SITESwith this value.

• MASTER_SITE_BACKUP: Backup location(s) for distribution files and patch files ifnot found locally or
in ${MASTER_SITES} or ${PATCH_SITES} respectively. The defaults are
ftp://ftp.NetBSD.org/pub/NetBSD/packages/distfiles/ ${DIST_SUBDIR}/ and
ftp://ftp.freebsd.org/pub/FreeBSD/distfiles/${DIST_ SUBDIR}/ .

• BINPKG_SITES: List of sites carrying binary pkgs.

5.2. Variables affecting the build process
XXX

• PACKAGES: The top level directory for the binary packages. The default is
${PKGSRCDIR}/packages .

• WRKOBJDIR: The top level directory where, if defined, the separate working directories will get
created, and symbolically linked to from${WRKDIR} (see below). This is useful for building packages
on several architectures, then${PKGSRCDIR} can be NFS-mounted while${WRKOBJDIR} is local to
every architecture. (It should be noted thatPKGSRCDIRshould not be set by the user — it is an internal
definition which refers to the root of the pkgsrc tree. It is possible to have many pkgsrc tree instances.)

• LOCALPATCHES: Directory for local patches that aren’t part of pkgsrc. SeeSection 8.3for more
information.rel andarch are replaced with OS release (“2.0”, etc.) and architecture(“mipsel”, etc.).

19

Chapter 5. Configuring pkgsrc

• PKGMAKECONF: Location of themk.conf file used by a package’s BSD-style Makefile. If this is not
set,MAKECONFis set to/dev/null to avoid picking up settings used by builds in/usr/src .

5.3. Developer/advanced settings
XXX

• PKG_DEVELOPER: Run some sanity checks that package developers want:

• make sure patches apply with zero fuzz

• run check-shlibs to see that all binaries will find their shared libs.

• PKG_DEBUG_LEVEL: The level of debugging output which is displayed whilst making and installing
the package. The default value for this is 0, which will not display the commands as they are executed
(normal, default, quiet operation); the value 1 will display all shell commands before their invocation,
and the value 2 will display both the shell commands before their invocation, and their actual
execution progress withset -xwill be displayed.

• ALLOW_VULNERABILITIES.pkgbase: A space separated list of vulnerability IDs that may be ignored
when performing the automated security checks. These IDs are listed in the pkg-vulnerabilities file
and are displayed byaudit-packageswhen it finds a vulnerable package.

• SKIP_AUDIT_PACKAGES: If this is set to “yes”, the automated security checks (which use the
security/audit-packages package) will beentirely skipped forall packages built. Normally
you’ll want to use ALLOW_VULNERABILITIES instead of this.

5.4. Selecting Build Options
Some packages have build time options, usually to select between different dependencies, enable
optional support for big dependencies or enable experimental features.

To see which options, if any, a package supports, and which options are mutually exclusive, runmake
show-options, for example:

The following options are supported by this package:
ssl Enable SSL support.

Exactly one of the following gecko options is required:
firefox Use firefox as gecko rendering engine.
mozilla Use mozilla as gecko rendering engine.

At most one of the following database options may be selected :
mysql Enable support for MySQL database.
pgsql Enable support for PostgreSQL database.

These options are enabled by default: firefox
These options are currently enabled: mozilla ssl

20

Chapter 5. Configuring pkgsrc

The following variables can be defined in/etc/mk.conf to select which options to enable for a
package:PKG_DEFAULT_OPTIONS, which can be used to select or disable options for all packages that
support them, andPKG_OPTIONS.pkgbase, which can be used to select or disable options specifically
for packagepkgbase. Options listed in these variables are selected, options preceded by “-” are
disabled. A few examples:

$ grep "PKG.*OPTION" /etc/mk.conf
PKG_DEFAULT_OPTIONS= -arts -dvdread -esound
PKG_OPTIONS.kdebase= debug -sasl
PKG_OPTIONS.apache= suexec

The following settings are consulted in the order given, andthe last setting that selects or disables an
option is used:

1. the default options as suggested by the package maintainer

2. the options implied by the settings of legacy variables (see below)

3. PKG_DEFAULT_OPTIONS

4. PKG_OPTIONS.pkgbase

For groups of mutually exclusive options, the last option selected is used, all others are automatically
disabled. If an option of the group is explicitly disabled, the previously selected option, if any, is used. It
is an error if no option from a required group of options is selected, and building the package will fail.

Before the options framework was introduced, build optionswere selected by setting a variable (often
namedUSE_FOO) in /etc/mk.conf for each option. To ease transition to the options frameworkfor the
user, these legacy variables are converted to the appropriate options setting (PKG_OPTIONS.pkgbase)
automatically. A warning is issued to prompt the user to update /etc/mk.conf to use the options
framework directly. Support for the legacy variables will be removed eventually.

21

Chapter 6.

Creating binary packages

6.1. Building a single binary package
Once you have built and installed a package, you can create abinary packagewhich can be installed on
another system with pkg_add(1). This saves having to build the same package on a group of hosts and
wasting CPU time. It also provides a simple means for others to install your package, should you
distribute it.

To create a binary package, change into the appropriate directory in pkgsrc, and runmake package:

cd misc/figlet

make package

This will build and install your package (if not already done), and then build a binary package from what
was installed. You can then use thepkg_* tools to manipulate it. Binary packages are created by default
in /usr/pkgsrc/packages , in the form of a gzipped tar file. SeeSection B.2for a continuation of the
abovemisc/figlet example.

SeeChapter 18for information on how to submit such a binary package.

6.2. Settings for creation of binary packages
SeeSection 14.16.

6.3. Doing a bulk build of all packages
If you want to get a full set of precompiled binary packages, this section describes how to get them.
Beware that the bulk build will remove all currently installed packages from your system!

Having an FTP server configured either on the machine doing the bulk builds or on a nearby NFS server
can help to make the packages available to other machines that can then save time by installing only the
binary packages. See ftpd(8) for more information. If you use a remote NFS server’s storage, be sure to
not actually compile on NFS storage, as this slows things down a lot.

6.3.1. Configuration

6.3.1.1. build.conf

Thebuild.conf file is the main configuration file for bulk builds. You can configure how your copy of
pkgsrc is kept up to date, how the distfiles are downloaded, how the packages are built and how the report

22

Chapter 6. Creating binary packages

is generated. You can find an annotated example file inpkgsrc/mk/bulk/build.conf-example . To
use it, copybuild.conf-example to build.conf and edit it, following the comments in that file.

6.3.1.2. /etc/mk.conf

You may want to set variables in/etc/mk.conf . Look atpkgsrc/mk/defaults/mk.conf for details
of the default settings. You will want to ensure thatACCEPTABLE_LICENSESmeet your local policy. As
used in this example,_ACCEPTABLE=yesacceptsall licenses.

PACKAGES?= ${_PKGSRCDIR}/packages/${MACHINE_ARCH}
WRKOBJDIR?= /usr/tmp/pkgsrc # build here instead of in pkgs rc
BSDSRCDIR= /usr/src
BSDXSRCDIR= /usr/xsrc # for x11/xservers
OBJHOSTNAME?= yes # use work.‘hostname‘
FAILOVER_FETCH= yes # insist on the correct checksum
PKG_DEVELOPER?= yes
_ACCEPTABLE= yes

Some options that are especially useful for bulk builds can be found at the top lines of the file
mk/bulk/bsd.bulk-pkg.mk . The most useful options of these are briefly described here.

• If you are on a slow machine, you may want to setUSE_BULK_BROKEN_CHECKto “no”.

• If you are doing bulk builds from a read-only copy of pkgsrc, you have to setBULKFILESDIR to the
directory where all log files are created. Otherwise the log files are created in the pkgsrc directory.

• Another important variable isBULK_PREREQ, which is a list of packages that should be always
available while building other packages.

Some other options are scattered in the pkgsrc infrastructure:

• ALLOW_VULNERABLE_PACKAGESshould be set toyes . The purpose of the bulk builds is creating
binary packages, no matter if they are vulnerable or not. When uploading the packages to a public
server, the vulnerable packages will be put into a directoryof their own. Leaving this variable unset
would prevent the bulk build system from even trying to buildthem, so possible building errors would
not show up.

• CHECK_FILES(pkgsrc/mk/bsd.pkg.check.mk) can be set to “yes” to check that the installed set
of files matches thePLIST .

• CHECK_INTERPRETER(pkgsrc/mk/bsd.pkg.check.mk) can be set to “yes” to check that the
installed “#!”-scripts will find their interpreter.

6.3.1.3. pre-build.local

It is possible to configure the bulk build to perform certain site-specific tasks at the end of the pre-build
stage. If the filepre-build.local exists in/usr/pkgsrc/mk/bulk , it will be executed (as a sh(1)
script) at the end of the usual pre-build stage. An example use of pre-build.local is to have the line:

echo "I do not have enough disk space to build this pig." \

> pkgsrc/misc/openoffice/$BROKENF

23

Chapter 6. Creating binary packages

to prevent the system from trying to build a particular package which requires nearly 3 GB of disk space.

6.3.2. Other environmental considerations

As /usr/pkg will be completely deleted at the start of bulk builds, make sure your login shell is placed
somewhere else. Either drop it into/usr/local/bin (and adjust your login shell in the passwd file), or
(re-)install it via pkg_add(1) from/etc/rc.local , so you can login after a reboot (remember that your
current process won’t die if the package is removed, you justcan’t start any new instances of the shell
any more). Also, if you use NetBSD earlier than 1.5, or you still want to use the pkgsrc version of ssh for
some reason, be sure to install ssh before starting it fromrc.local :

(cd /usr/pkgsrc/security/ssh ; make bulk-install)
if [-f /usr/pkg/etc/rc.d/sshd]; then

/usr/pkg/etc/rc.d/sshd
fi

Not doing so will result in you being not able to log in via ssh after the bulk build is finished or if the
machine gets rebooted or crashes. You have been warned! :)

6.3.3. Operation

Make sure you don’t need any of the packages still installed.

Warning
During the bulk build, all packages will be removed!

Be sure to remove all other things that might interfere with builds, like some libs installed in
/usr/local , etc. then become root and type:

cd /usr/pkgsrc

sh mk/bulk/build

If for some reason your last build didn’t complete (power failure, system panic, ...), you can continue it
by running:

sh mk/bulk/build restart

At the end of the bulk build, you will get a summary via mail, and find build logs in the directory
specified byFTP in thebuild.conf file.

6.3.4. What it does

The bulk builds consist of three steps:

24

Chapter 6. Creating binary packages

1. pre-build

The script updates your pkgsrc tree via (anon)cvs, then cleans out any broken distfiles, and removes
all packages installed.

2. the bulk build

This is basically “make bulk-package” with an optimised order in which packages will be built.
Packages that don’t require other packages will be built first, and packages with many dependencies
will be built later.

3. post-build

Generates a report that’s placed in the directory specified in thebuild.conf file named
broken.html , a short version of that report will also be mailed to the build’s admin.

During the build, a list of broken packages will be compiled in /usr/pkgsrc/.broken (or
.../.broken.${MACHINE} if OBJMACHINEis set), individual build logs of broken builds can be found
in the package’s directory. These files are used by the bulk-targets to mark broken builds to not waste
time trying to rebuild them, and they can be used to debug these broken package builds later.

6.3.5. Disk space requirements

Currently, roughly the following requirements are valid for NetBSD 2.0/i386:

• 10 GB - distfiles (NFS ok)

• 8 GB - full set of all binaries (NFS ok)

• 5 GB - temp space for compiling (local disk recommended)

Note that all pkgs will be de-installed as soon as they are turned into a binary package, and that sources
are removed, so there is no excessively huge demand to disk space. Afterwards, if the package is needed
again, it will be installed via pkg_add(1) instead of building again, so there are no cycles wasted by
recompiling.

6.3.6. Setting up a sandbox for chrooted builds

If you don’t want all the packages nuked from a machine (rendering it useless for anything but pkg
compiling), there is the possibility of doing the package bulk build inside a chroot environment.

The first step is to set up a chroot sandbox, e.g./usr/sandbox . This can be done by using null mounts,
or manually.

There is a shell script calledpkgsrc/mk/bulk/mksandbox which will set up the sandbox environment
using null mounts. It will also create a script calledsandbox in the root of the sandbox environment,
which will allow the null mounts to be activated using thesandbox mountcommand and deactivated
using thesandbox umountcommand.

To set up a sandbox environment by hand, after extracting allthe sets from a NetBSD installation or
doing amake distribution DESTDIR=/usr/sandbox in /usr/src/etc , be sure the following items
are present and properly configured:

25

Chapter 6. Creating binary packages

1. Kernel

cp /netbsd /usr/sandbox

2. /dev/ *

cd /usr/sandbox/dev ; sh MAKEDEV all

3. /etc/resolv.conf (for security/smtpd and mail):

cp /etc/resolv.conf /usr/sandbox/etc

4. Working(!) mail config (hostname, sendmail.cf):

cp /etc/mail/sendmail.cf /usr/sandbox/etc/mail

5. /etc/localtime (for security/smtpd):

ln -sf /usr/share/zoneinfo/UTC /usr/sandbox/etc/localtime

6. /usr/src (system sources, forsysutils/aperture , net/ppp-mppe):

ln -s ../disk1/cvs .

ln -s cvs/src-2.0 src

7. Create/var/db/pkg (not part of default install):

mkdir /usr/sandbox/var/db/pkg

8. Create/usr/pkg (not part of default install):

mkdir /usr/sandbox/usr/pkg

9. Checkout pkgsrc via cvs into/usr/sandbox/usr/pkgsrc :

cd /usr/sandbox/usr

cvs -d anoncvs@anoncvs.NetBSD.org:/cvsroot checkout -d -P pkgsrc

Do not mount/link this to the copy of your pkgsrc tree you do development in, as this will likely
cause problems!

10. Make/usr/sandbox/usr/pkgsrc/packages and.../distfiles point somewhere
appropriate. NFS- and/or nullfs-mounts may come in handy!

11. Edit/etc/mk.conf , seeSection 6.3.1.2.

12. Adjustmk/bulk/build.conf to suit your needs.

When the chroot sandbox is set up, you can start the build withthe following steps:

cd /usr/sandbox/usr/pkgsrc

sh mk/bulk/do-sandbox-build

This will just jump inside the sandbox and start building. Atthe end of the build, mail will be sent with
the results of the build. Created binary pkgs will be in/usr/sandbox/usr/pkgsrc/packages

(wherever that points/mounts to/from).

6.3.7. Building a partial set of packages

In addition to building a complete set of all packages in pkgsrc, thepkgsrc/mk/bulk/build script
may be used to build a subset of the packages contained in pkgsrc. By settingSPECIFIC_PKGS in
/etc/mk.conf , the variables

26

Chapter 6. Creating binary packages

• SITE_SPECIFIC_PKGS

• HOST_SPECIFIC_PKGS

• GROUP_SPECIFIC_PKGS

• USER_SPECIFIC_PKGS

will define the set of packages which should be built. The bulkbuild code will also include any packages
which are needed as dependencies for the explicitly listed packages.

One use of this is to do a bulk build withSPECIFIC_PKGS in a chroot sandbox periodically to have a
complete set of the binary packages needed for your site available without the overhead of building extra
packages that are not needed.

6.3.8. Uploading results of a bulk build

This section describes how pkgsrc developers can upload binary pkgs built by bulk builds to
ftp.NetBSD.org.

If you would like to automatically create checksum files for the binary packages you intend to upload,
remember to setMKSUMS=yesin yourmk/bulk/build.conf .

If you would like to PGP sign the checksum files (highly recommended!), remember to set
SIGN_AS=username@NetBSD.org in yourmk/bulk/build.conf . This will prompt you for your
GPG password to sign the files before uploading everything.

Then, make sure that you haveRSYNC_DSTset properly in yourmk/bulk/build.conf file, i.e. adjust it
to something like one of the following:

RSYNC_DST=ftp.NetBSD.org:/pub/NetBSD/packages/pkgsr c-200xQy/NetBSD-a.b.c/arch/upload

Please use appropriate values for "pkgsrc-200xQy", "NetBSD-a.b.c" and "arch" here. If your login on
ftp.NetBSD.org is different from your local login, write your login directly into the variable, e.g. my
local account is "feyrer", but for my login "hubertf", I use:

RSYNC_DST=hubertf@ftp.NetBSD.org:/pub/NetBSD/packag es/pkgsrc-200xQy/NetBSD-a.b.c/arch/upload

A separateupload directory is used here to allow "closing" the directory during upload. To do so, run
the following command on ftp.NetBSD.org next:

nbftp% mkdir -p -m 750 /pub/NetBSD/packages/pkgsrc-200xQy/NetBSD-a.b.c/arch/upload

Please note that/pub/NetBSD/packages is only appropriate for packages for the NetBSD operating
system. Binary packages for other operating systems shouldgo into /pub/pkgsrc .

Before uploading the binary pkgs, ssh authentication needsto be set up. This example shows how to set
up temporary keys for the root accountinside the sandbox(assuming that no keys should be present there
usually):

chroot /usr/sandbox

chroot- # rm $HOME/.ssh/id-dsa*
chroot- # ssh-keygen -t dsa

chroot- # cat $HOME/.ssh/id-dsa.pub

27

Chapter 6. Creating binary packages

Now take the output ofid-dsa.pub and append it to your~/.ssh/authorized_keys file on
ftp.NetBSD.org. You can remove the key after the upload is done!

Next, test if your ssh connection really works:

chroot- # ssh ftp.NetBSD.org date

Use "-l yourNetBSDlogin" here as appropriate!

Now after all this works, you can exit the sandbox and start the upload:

chroot- # exit

cd /usr/sandbox/usr/pkgsrc

sh mk/bulk/do-sandbox-upload

The upload process may take quite some time. Use ls(1) or du(1) on the FTP server to monitor progress
of the upload. The upload script will take care of not uploading restricted packages and putting
vulnerable packages into thevulnerable subdirectory.

After the upload has ended, first thing is to revoke ssh access:

nbftp% vi ~/.ssh/authorized_keys

Gdd:x!

Use whatever is needed to remove the key you’ve entered before! Last, move the uploaded packages out
of theupload directory to have them accessible to everyone:

nbftp% cd /pub/NetBSD/packages/pkgsrc-200xQy/NetBSD-a.b.c/arch

nbftp% mv upload/* .

nbftp% rmdir upload

nbftp% chmod 755 .

6.4. Creating a multiple CD-ROM packages collection
After your pkgsrc bulk-build has completed, you may wish to create a CD-ROM set of the resulting
binary packages to assist in installing packages on other machines. Thepkgtools/cdpack package
provides a simple tool for creating the ISO 9660 images.cdpackarranges the packages on the
CD-ROMs in a way that keeps all the dependencies for a given package on the same CD as that package.

6.4.1. Example of cdpack

Complete documentation for cdpack is found in the cdpack(1)man page. The following short example
assumes that the binary packages are left in/usr/pkgsrc/packages/All and that sufficient disk
space exists in/u2 to hold the ISO 9660 images.

mkdir /u2/images

pkg_add /usr/pkgsrc/packages/All/cdpack

cdpack /usr/pkgsrc/packages/All /u2/images

If you wish to include a common set of files (COPYRIGHT, README, etc.) on each CD in the collection,
then you need to create a directory which contains these files. e.g.

28

Chapter 6. Creating binary packages

mkdir /tmp/common

echo "This is a README" > /tmp/common/README

echo "Another file" > /tmp/common/COPYING

mkdir /tmp/common/bin

echo "#!/bin/sh" > /tmp/common/bin/myscript

echo "echo Hello world" >> /tmp/common/bin/myscript

chmod 755 /tmp/common/bin/myscript

Now create the images:

cdpack -x /tmp/common /usr/pkgsrc/packages/All /u2/images

Each image will containREADME, COPYING, andbin/myscript in their root directories.

29

Chapter 7.

Frequently Asked Questions

This section contains hints, tips & tricks on special thingsin pkgsrc that we didn’t find a better place for
in the previous chapters, and it contains items for both pkgsrc users and developers.

7.1. Are there any mailing lists for pkg-related discussion ?
The following mailing lists may be of interest to pkgsrc users:

• pkgsrc-bugs (http://www.NetBSD.org/MailingLists/index.html#pkgsrc-bugs): A list where problem
reports related to pkgsrc are sent and discussed.

• pkgsrc-bulk (http://www.NetBSD.org/MailingLists/index.html#pkgsrc-bulk): A list where the results
of pkgsrc bulk builds are sent and discussed.

• pkgsrc-changes (http://www.NetBSD.org/MailingLists/index.html#pkgsrc-changes): A list where all
commit messages to pkgsrc are sent.

• tech-pkg (http://www.NetBSD.org/MailingLists/index.html#tech-pkg): A general discussion list for all
things related to pkgsrc.

To subscribe, do:

% echo subscribe listname | mail majordomo@NetBSD.org

Archives for all these mailing lists are available from http://mail-index.NetBSD.org/.

7.2. Where’s the pkgviews documentation?
Pkgviews is tightly integrated with buildlink. You can find apkgviews User’s guide in
pkgsrc/mk/buildlink3/PKGVIEWS_UG .

7.3. Utilities for package management (pkgtools)
Thepkgsrc/pkgtools directory pkgtools contains a number of useful utilities for both users and
developers of pkgsrc. This section attempts only to make thereader aware of the utilities and when they
might be useful, and not to duplicate the documentation thatcomes with each package.

Utilities used by pkgsrc (automatically installed when needed):

• pkgtools/x11-links : Symlinks for use by buildlink.

OS tool augmentation (automatically installed when needed):

30

Chapter 7. Frequently Asked Questions

• pkgtools/digest : Calculates various kinds of checksums (including SHA1).

• pkgtools/libnbcompat : Compatibility library for pkgsrc tools.

• pkgtools/mtree : Installed on non-BSD systems due to lack of native mtree.

• pkgtools/pkg_install : Up-to-date replacement for/usr/sbin/pkg_install , or for use on
operating systems where pkg_install is not present.

Utilities used by pkgsrc (not automatically installed):

• pkgtools/pkg_tarup : Create a binary package from an already-installed package. Used bymake
replaceto save the old package.

• pkgtools/dfdisk : Adds extra functionality to pkgsrc, allowing it to fetch distfiles from multiple
locations. It currently supports the following methods: multiple CD-ROMs and network FTP/HTTP
connections.

• pkgtools/xpkgwedge : Put X11 packages someplace else (enabled by default).

• devel/cpuflags : Determine the best compiler flags to optimise code for your current CPU and
compiler.

Utilities for keeping track of installed packages, being upto date, etc:

• pkgtools/pkg_chk : Reports on packages whose installed versions do not match the latest pkgsrc
entries.

• pkgtools/pkgdep : Makes dependency graphs of packages, to aid in choosing a strategy for
updating.

• pkgtools/pkgdepgraph : Makes graphs from the output ofpkgtools/pkgdep (uses graphviz).

• pkgtools/pkglint : The pkglint(1) program checks a pkgsrc entry for errors, lintpkgsrc(1) does
various checks on the complete pkgsrc system.

• pkgtools/pkgsurvey : Report what packages you have installed.

Utilities for people maintaining or creating individual packages:

• pkgtools/pkgdiff : Automate making and maintaining patches for a package (includes pkgdiff,
pkgvi, mkpatches, etc.).

• pkgtools/rpm2pkg , pkgtools/url2pkg : Aids in converting to pkgsrc.

• pkgtools/gensolpkg : Convert pkgsrc to a Solaris package.

Utilities for people maintaining pkgsrc (or: more obscure pkg utilities)

• pkgtools/pkg_comp : Build packages in a chrooted area.

• pkgtools/libkver : Spoof kernel version for chrooted cross builds.

31

Chapter 7. Frequently Asked Questions

7.4. How to use pkgsrc as non-root
If you want to use pkgsrc as non-root user, you can set some variables to make pkgsrc work under these
conditions. At the very least, you need to setUNPRIVILEGEDto “yes”; this will turn on unprivileged
mode and set multiple related variables to allow installation of packages as non-root.

In case the defaults are not enough, you may want to tune some other variables used. For example, if the
automatic user/group detection leads to incorrect values (or not the ones you would like to use), you can
change them by settingUNPRIVILEGED_USERandUNPRIVILEGED_GROUPrespectively.

As regards bootstrapping, please note that thebootstrap script will ease non-root configuration when
given the “--ignore-user-check” flag, as it will choose and use multiple default directories under~/pkg

as the installation targets. These directories can be overriden by the “--prefix” flag provided by the script,
as well as some others that allow finer tuning of the tree layout.

7.5. How to resume transfers when fetching distfiles?
By default, resuming transfers in pkgsrc is disabled, but you can enable this feature by adding the option
PKG_RESUME_TRANSFERS=YESinto /etc/mk.conf . If, during a fetch step, an incomplete distfile is
found, pkgsrc will try to resume it.

You can also use a different program than the default ftp(1) by changing theFETCH_CMDvariable. Don’t
forget to setFETCH_RESUME_ARGSandFETCH_OUTPUT_ARGSif you are not using default values.

For example, if you want to usewget to resume downloads, you’ll have to use something like:

FETCH_CMD= wget
FETCH_BEFORE_ARGS= --passive-ftp
FETCH_RESUME_ARGS= -c
FETCH_OUTPUT_ARGS= -O

7.6. How can I install/use XFree86 from pkgsrc?
If you want to use XFree86 from pkgsrc instead of your system’s own X11 (/usr/X11R6 ,
/usr/openwin , ...), you will have to add the following line into/etc/mk.conf :

X11_TYPE=XFree86

7.7. How can I install/use X.org from pkgsrc?
If you want to use X.org from pkgsrc instead of your system’s own X11 (/usr/X11R6 , /usr/openwin ,
...) you will have to add the following line into/etc/mk.conf :

X11_TYPE=xorg

Note: The DragonFly operating system defaults to using this X.org X11 implementation from pkgsrc.

32

Chapter 7. Frequently Asked Questions

7.8. How to fetch files from behind a firewall
If you are sitting behind a firewall which does not allow direct connections to Internet hosts (i.e.
non-NAT), you may specify the relevant proxy hosts. This is done using an environment variable in the
form of a URL, e.g. in Amdahl, the machine “orpheus.amdahl.com” is one of the firewalls, and it uses
port 80 as the proxy port number. So the proxy environment variables are:

ftp_proxy=ftp://orpheus.amdahl.com:80/
http_proxy=http://orpheus.amdahl.com:80/

7.9. How do I tell make fetch to do passive FTP?
This depends on which utility is used to retrieve distfiles. From bsd.pkg.mk , FETCH_CMDis assigned
the first available command from the following list:

• ${LOCALBASE}/bin/ftp

• /usr/bin/ftp

On a default NetBSD installation, this will be/usr/bin/ftp , which automatically tries passive
connections first, and falls back to active connections if the server refuses to do passive. For the other
tools, add the following to your/etc/mk.conf file: PASSIVE_FETCH=1.

Having that option present will prevent/usr/bin/ftp from falling back to active transfers.

7.10. How to fetch all distfiles at once
You would like to download all the distfiles in a single batch from work or university, where you can’t
run amake fetch. There is an archive of distfiles on ftp.NetBSD.org
(ftp://ftp.NetBSD.org/pub/NetBSD/packages/distfiles/), but downloading the entire directory may not be
appropriate.

The answer here is to do amake fetch-list in /usr/pkgsrc or one of its subdirectories, carry the
resulting list to your machine at work/school and use it there. If you don’t have a NetBSD-compatible
ftp(1) (like lukemftp) at work, don’t forget to setFETCH_CMDto something that fetches a URL:

At home:

% cd /usr/pkgsrc

% make fetch-list FETCH_CMD=wget DISTDIR=/tmp/distfiles >/tmp/fetch.sh

% scp /tmp/fetch.sh work:/tmp

At work:

% sh /tmp/fetch.sh

then tar up/tmp/distfiles and take it home.

If you have a machine running NetBSD, and you want to getall distfiles (even ones that aren’t for your
machine architecture), you can do so by using the above-mentionedmake fetch-listapproach, or fetch
the distfiles directly by running:

33

Chapter 7. Frequently Asked Questions

% make mirror-distfiles

If you even decide to ignoreNO_{SRC,BIN}_ON_{FTP,CDROM} , then you can get everything by
running:

% make fetch NO_SKIP=yes

7.11. What does “Don’t know how to make
/usr/share/tmac/tmac.andoc” mean?

When compiling thepkgtools/pkg_install package, you get the error from make that it doesn’t
know how to make/usr/share/tmac/tmac.andoc ? This indicates that you don’t have installed the
“text” set (nroff, ...) from the NetBSD base distribution onyour machine. It is recommended to do that to
format man pages.

In the case of thepkgtools/pkg_install package, you can get away with settingNOMAN=YESeither
in the environment or in/etc/mk.conf .

7.12. What does “Could not find bsd.own.mk” mean?
You didn’t install the compiler set,comp.tgz , when you installed your NetBSD machine. Please get and
install it, by extracting it in/ :

cd /

tar --unlink -zxvpf .../comp.tgz

comp.tgz is part of every NetBSD release. Get the one that correspondsto your release (determine via
uname -r).

7.13. Using ’sudo’ with pkgsrc
When installing packages as non-root user and using the just-in-time su(1) feature of pkgsrc, it can
become annoying to type in the root password for each required package installed. To avoid this, the sudo
package can be used, which does password caching over a limited time. To use it, install sudo (either as
binary package or fromsecurity/sudo) and then put the following into your/etc/mk.conf :

.if exists(${LOCALBASE}/bin/sudo)
SU_CMD= ${LOCALBASE}/bin/sudo /bin/sh -c
.endif

7.14. How do I change the location of configuration files?
As the system administrator, you can choose where configuration files are installed. The default settings
make all these files go into${PREFIX}/etc or some of its subdirectories; this may be suboptimal

34

Chapter 7. Frequently Asked Questions

depending on your expectations (e.g., a read-only, NFS-exportedPREFIX with a need of per-machine
configuration of the provided packages).

In order to change the defaults, you can modify thePKG_SYSCONFBASEvariable (in/etc/mk.conf) to
point to your preferred configuration directory; some common examples include/etc or /etc/pkg .

Furthermore, you can change this value on a per-package basis by setting the
PKG_SYSCONFDIR.${PKG_SYSCONFVAR}variable.PKG_SYSCONFVAR’s value usually matches the
name of the package you would like to modify, that is, the contents ofPKGBASE.

Note that after changing these settings, you must rebuild and reinstall any affected packages.

7.15. Automated security checks
Please be aware that there can often be bugs in third-party software, and some of these bugs can leave a
machine vulnerable to exploitation by attackers. In an effort to lessen the exposure, the NetBSD
packages team maintains a database of known-exploits to packages which have at one time been
included in pkgsrc. The database can be downloaded automatically, and a security audit of all packages
installed on a system can take place. To do this, install thesecurity/audit-packages package. It has
two components:

1. download-vulnerability-list , an easy way to download a list of the security vulnerabilities
information. This list is kept up to date by the NetBSD security officer and the NetBSD packages
team, and is distributed from the NetBSD ftp server:

ftp://ftp.NetBSD.org/pub/NetBSD/packages/distfiles/pkg-vulnerabilities

2. audit-packages, an easy way to audit the current machine, checking each vulnerability which is
known. If a vulnerable package is installed, it will be shownby output to stdout, including a
description of the type of vulnerability, and a URL containing more information.

Use of thesecurity/audit-packages package is strongly recommended! After “audit-packages” is
installed, please read the package’s message, which you canget by runningpkg_info -D

audit-packages.

If this package is installed, pkgsrc builds will use it to perform a security check before building any
package. SeeSection 5.2for ways to control this check.

35

II. The pkgsrc developer’s guide

Chapter 8.

Package components - files,
directories and contents

Whenever you’re preparing a package, there are a number of files involved which are described in the
following sections.

8.1. Makefile
Building, installation and creation of a binary package areall controlled by the package’sMakefile .
TheMakefile describes various things about a package, for example from where to get it, how to
configure, build, and install it.

A packageMakefile contains several sections that describe the package.

In the first section there are the following variables, whichshould appear exactly in the order given here.

• DISTNAMEis the basename of the distribution file to be downloaded fromthe package’s website.

• PKGNAMEis the name of the package, as used by pkgsrc. You only need to provide it if it differs from
DISTNAME. Usually it is the directory name together with the version number. It must match the
regular expression̂[A-Za-z0-9][A-Za-z0-9-_.+] * $, that is, it starts with a letter or digit, and
contains only letters, digits, dashes, underscores, dots and plus signs.

• CATEGORIESis a list of categories which the package fits in. You can choose any of the top-level
directories of pkgsrc for it.

Currently the following values are available forCATEGORIES. If more than one is used, they need to
be separated by spaces:

archivers cross geography meta-pkgs security
audio databases graphics misc shells
benchmarks devel ham multimedia sysutils
biology editors inputmethod net textproc
cad emulators lang news time
chat finance mail parallel wm
comms fonts math pkgtools www
converters games mbone print x11

• MASTER_SITESis a list of URLs where the distribution files can be downloaded. Each URL must end
with a slash.

TheMASTER_SITESmay make use of the following predefined sites:

${MASTER_SITE_APACHE}
${MASTER_SITE_BACKUP}
${MASTER_SITE_CYGWIN}

37

Chapter 8. Package components - files, directories and contents

${MASTER_SITE_DEBIAN}
${MASTER_SITE_FREEBSD}
${MASTER_SITE_FREEBSD_LOCAL}
${MASTER_SITE_GNOME}
${MASTER_SITE_GNU}
${MASTER_SITE_GNUSTEP}
${MASTER_SITE_IFARCHIVE}
${MASTER_SITE_MOZILLA}
${MASTER_SITE_OPENOFFICE}
${MASTER_SITE_PERL_CPAN}
${MASTER_SITE_R_CRAN}
${MASTER_SITE_SOURCEFORGE}
${MASTER_SITE_SUNSITE}
${MASTER_SITE_SUSE}
${MASTER_SITE_TEX_CTAN}
${MASTER_SITE_XCONTRIB}
${MASTER_SITE_XEMACS}

If one of these predefined sites is chosen, you may want to specify a subdirectory of that site. Since
these macros may expand to more than one actual site, youmustuse the following construct to specify
a subdirectory:

${MASTER_SITE_GNU:=subdirectory/name/}
${MASTER_SITE_SOURCEFORGE:=project_name/}

Note the trailing slash after the subdirectory name.

If the package has multipleDISTFILES or multiplePATCHFILESfrom different sites, setSITES_foo

to a list of URIs where file “foo” may be found. “foo” includes the suffix, e.g.:

DISTFILES= ${DISTNAME}${EXTRACT_SUFX}
DISTFILES+= foo-file.tar.gz
SITES_foo-file.tar.gz= \

http://www.somewhere.com/somehow/ \
http://www.somewhereelse.com/mirror/somehow/

• DISTFILES : Name(s) of archive file(s) containing distribution. The default is
${DISTNAME}${EXTRACT_SUFX} . Should only be set if you have more than one distfile.

Note that the normal default setting ofDISTFILES must be made explicit if you want to add to it
(rather than replace it), as you usually would.

• EXTRACT_SUFX: Suffix of the distribution file, will be appended toDISTNAME. Defaults to.tar.gz .

The second section contains information about separately downloaded patches, if any.

• PATCHFILES: Name(s) of additional files that contain distribution patches. There is no default. pkgsrc
will look for them atPATCH_SITES. They will automatically be uncompressed before patching if the
names end with.gz or .Z .

• PATCH_SITES: Primary location(s) for distribution patch files (seePATCHFILESbelow) if not found
locally.

The third section contains the following variables.

38

Chapter 8. Package components - files, directories and contents

• MAINTAINER is the email address of the person who feels responsible for this package, and who is
most likely to look at problems or questions regarding this package which have been reported with
send-pr(1). Other developers should contact theMAINTAINERbefore making major changes to the
package. When packaging a new program, setMAINTAINERto yourself. If you really can’t maintain
the package for future updates, set it to <tech-pkg@NetBSD.org >.

• HOMEPAGEis a URL where users can find more information about the package.

• COMMENTis a one-line description of the package (should not includethe package name).

Other variables that affect the build:

• WRKSRC: The directory where the interesting distribution files of the package are found. The default is
${WRKDIR}/${DISTNAME} , which works for most packages.

If a package doesn’t create a subdirectory for itself (most GNU software does, for instance), but
extracts itself in the current directory, you should setWRKSRC= ${WRKDIR}.

If a package doesn’t create a subdirectory with the name ofDISTNAMEbut some different name, set
WRKSRCto point to the proper name in${WRKDIR} , for exampleWRKSRC=

${WRKDIR}/${DISTNAME}/unix . Seelang/tcl andx11/tk for other examples.

The name of the working directory created by pkgsrc is taken from theWRKDIR_BASENAMEvariable.
By default, its value iswork . If you want to use the same pkgsrc tree for building different kinds of
binary packages, you can change the variable according to your needs. Two other variables handle
common cases of settingWRKDIR_BASENAMEindividually. If OBJHOSTNAMEis defined in
/etc/mk.conf , the first component of the host’s name is attached to the directory name. If
OBJMACHINEis defined, the platform name is attached, which might look likework.i386 or
work.sparc .

Please pay attention to the following gotchas:

• Add MANCOMPRESSEDif man pages are installed in compressed form by the package;see comment in
bsd.pkg.mk .

• Replace/usr/local with “${PREFIX}” in all files (see patches, below).

• If the package installs any info files, seeSection 16.5.7.

8.2. distinfo
Thedistinfo file contains the message digest, or checksum, of each distfile needed for the package.
This ensures that the distfiles retrieved from the Internet have not been corrupted during transfer or
altered by a malign force to introduce a security hole. Due torecent rumor about weaknesses of digest
algorithms, all distfiles are protected using both SHA1 and RMD160 message digests, as well as the file
size.

Thedistinfo file also contains the checksums for all the patches found in thepatches directory (see
Section 8.3).

39

Chapter 8. Package components - files, directories and contents

To regenerate thedistinfo file, use themake makedistinfoor make mdi command.

Some packages have different sets of distfiles depending on the platform, for examplewww/navigator).
These are kept in the samedistinfo file and care should be taken when upgrading such a package to
ensure distfile information is not lost.

8.3. patches/*
This directory contains files that are used by the patch(1) command to modify the sources as distributed
in the distribution file into a form that will compile and run perfectly on NetBSD. The files are applied
successively in alphabetic order (as returned by a shell “patches/patch-*” glob expansion), sopatch-aa

is applied beforepatch-ab , etc.

Thepatch- * files should be indiff -bu format, and apply without a fuzz to avoid problems. (To force
patches to apply with fuzz you can setPATCH_FUZZ_FACTOR=-F2). Furthermore, do not put changes for
more than one file into a single patch file, as this will make future modifications more difficult.

Similar, a file should be patched at most once, not several times by several different patches. If a file
needs several patches, they should be combined into one file.

One important thing to mention is to pay attention that no RCSIDs get stored in the patch files, as these
will cause problems when later checked into the NetBSD CVS tree. Use thepkgdiff from the
pkgtools/pkgdiff package to avoid these problems.

For even more automation, we recommend usingmkpatchesfrom the same package to make a whole set
of patches. You just have to backup files before you edit them to filename.orig , e.g. withcp -p
filename filename.origor, easier, by usingpkgvi again from the same package. If you upgrade a
package this way, you can easily compare the new set of patches with the previously existing one with
patchdiff .

When you have finished a package, remember to generate the checksums for the patch files by using the
make makepatchsumcommand, seeSection 8.2.

When adding a patch that corrects a problem in the distfile (rather than e.g. enforcing pkgsrc’s view of
where man pages should go), send the patch as a bug report to the maintainer. This benefits non-pkgsrc
users of the package, and usually enables removing the patchin future version.

Patch files that are distributed by the author or other maintainers can be listed in$PATCHFILES.

If it is desired to store any patches that should not be committed into pkgsrc, they can be kept outside the
pkgsrc tree in the$LOCALPATCHESdirectory. The directory tree there is expected to have the same
“category/package” structure as pkgsrc, and patches are expected to be stored inside these dirs (also
known as$LOCALPATCHES/$PKGPATH). For example, if you want to keep a private patch for
pkgsrc/graphics/png , keep it in$LOCALPATCHES/graphics/png/mypatch . All files in the
named directory are expected to be patch files, andthey are applied after pkgsrc patches are applied.

8.4. Other mandatory files

DESCR

A multi-line description of the piece of software. This should include any credits where they are

40

Chapter 8. Package components - files, directories and contents

due. Please bear in mind that others do not share your sense ofhumour (or spelling idiosyncrasies),
and that others will read everything that you write here.

PLIST

This file governs the files that are installed on your system: all the binaries, manual pages, etc.
There are other directives which may be entered in this file, to control the creation and deletion of
directories, and the location of inserted files. SeeChapter 10for more information.

8.5. Optional files

INSTALL

This shell script is invoked twice by pkg_add(1). First timeafter package extraction and before files
are moved in place, the second time after the files to install are moved in place. This can be used to
do any custom procedures not possible with @exec commands inPLIST . See pkg_add(1) and
pkg_create(1) for more information.

DEINSTALL

This script is executed before and after any files are removed. It is this script’s responsibility to
clean up any additional messy details around the package’s installation, since all pkg_delete knows
is how to delete the files created in the original distribution. See pkg_delete(1) and pkg_create(1)
for more information.

MESSAGE

This file is displayed after installation of the package. Useful for things like legal notices on
almost-free software and hints for updating config files after installing modules for apache, PHP etc.
Please note that you can modify variables in it easily by using MESSAGE_SUBSTin the package’s
Makefile :

MESSAGE_SUBST+= SOMEVAR="somevalue"

replaces "${SOMEVAR}" with “somevalue” inMESSAGE.

8.6. work*
When you typemake, the distribution files are unpacked into the directory denoted byWRKDIR. It can be
removed by runningmake clean. Besides the sources, this directory is also used to keep various
timestamp files. The directory getsremoved completelyon clean. The default is${.CURDIR}/work or
${.CURDIR}/work.${MACHINE_ARCH} if OBJMACHINEis set.

8.7. files/*
If you have any files that you wish to be placed in the package prior to configuration or building, you
could place these files here and use a “${CP}” command in the “pre-configure” target to achieve this.
Alternatively, you could simply diff the file against/dev/null and use the patch mechanism to manage
the creation of this file.

41

Chapter 9.

Programming in Makefiles

Pkgsrc consists of manyMakefile fragments, each of which forms a well-defined part of the pkgsrc
system. Using the make(1) system as a programming language for a big system like pkgsrc requires
some discipline to keep the code correct and understandable.

The basic ingredients forMakefile programming are variables (which are actually macros) and shell
commands. Among these shell commands may even be more complex ones like awk(1) programs. To
make sure that every shell command runs as intended it is necessary to quote all variables correctly when
they are used.

This chapter describes some patterns, that appear quite often inMakefile s, including the pitfalls that
come along with them.

9.1. Makefile variables
Makefile variables contain strings that can be processed using the five operators “=”, “+=”, “?=”, “:=”,
and “!=”, which are described in the make(1) man page.

When a variable’s value is parsed from aMakefile , the hash character “#” and the backslash character
“\” are handled specially. If a backslash is followed by a newline, any whitespace immediately in front of
the backslash, the backslash, the newline, and any whitespace immediately behind the newline are
replaced with a single space. A backspace character and an immediately following hash character are
replaced with a single hash character. Otherwise, the backslash is passed as is. In a variable assignment,
any hash character that is not preceded by a backslash startsa comment that continues upto the end of the
logical line.

Note:Because of this parsing algorithm the only way to create a variable consisting of a single backslash
is using the “!=” operator, for example:BACKSLASH!=echo "\\" .

So far for defining variables. The other thing you can do with variables is evaluating them. A variable is
evaluated when it is part of the right side of the “:=” or the “!=” operator, or directly before executing a
shell command which the variable is part of. In all other cases, make(1) performs lazy evaluation, that is,
variables are not evaluated until there’s no other way. The “modifiers” mentioned in the man page also
evaluate the variable.

Some of the modifiers split the string into words and then operate on the words, others operate on the
string as a whole. When a string is split into words, it is split as you would expect it from sh(1).

No rule without exception—the.for loop does not follow the shell quoting rules but splits at sequences
of whitespace.

There are several types of variables that should be handled differently. Strings and two types of lists.

• Stringscan contain arbitrary characters. Nevertheless, you should restrict yourself to only using
printable characters. Examples arePREFIX andCOMMENT.

42

Chapter 9. Programming inMakefiles

• Internal listsare lists that are never exported to any shell command. Theirelements are separated by
whitespace. Therefore, the elements themselves cannot have embedded whitespace. Any other
characters are allowed. Internal lists can be used in.for loops. Examples areDEPENDSand
BUILD_DEPENDS.

• External listsare lists that may be exported to a shell command. Their elements can contain any
characters, including whitespace. That’s why they cannot be used in.for loops. Examples are
DISTFILES andMASTER_SITES.

9.1.1. Naming conventions

• All variable names starting with an underscore are reservedfor use by the pkgsrc infrastructure. They
shall not be used by packageMakefile s.

• In .for loops you should use lowercase variable names for the iteration variables.

• All list variables should have a “plural” name, e.g.PKG_OPTIONSor DISTFILES .

9.2. Code snippets
This section presents you with some code snippets you shoulduse in your own code. If you don’t find
anything appropriate here, you should test your code and addit here.

9.2.1. Adding things to a list

STRING= foo * bar ‘date‘
INT_LIST= # empty
ANOTHER_INT_LIST= apache-[0-9] * :../../www/apache
EXT_LIST= # empty
ANOTHER_EXT_LIST= a=b c=d

INT_LIST+= ${STRING} # 1
INT_LIST+= ${ANOTHER_INT_LIST} # 2
EXT_LIST+= ${STRING:Q} # 3
EXT_LIST+= ${ANOTHER_EXT_LIST} # 4

When you add a string to an external list (example 3), it must be quoted. In all other cases, you must not
add a quoting level. You must not merge internal and externallists, unless you are sure that all entries are
correctly interpreted in both lists.

9.2.2. Converting an internal list into an external list

EXT_LIST= # empty
.for i in ${INT_LIST}
EXT_LIST+= ${i:Q}""
.endfor

43

Chapter 9. Programming inMakefiles

This code converts the internal listINT_LIST into the external listEXT_LIST . As the elements of an
internal list are unquoted they must be quoted here. The reason for appending"" is explained below.

9.2.3. Passing variables to a shell command

STRING= foo bar < > * ‘date‘ $$HOME ’ "
EXT_LIST= string=${STRING:Q} x=second\ item

all:
echo ${STRING} # 1
echo "${STRING}" # 2
echo "${STRING:Q}" # 3
echo ${STRING:Q} # 4
echo x${STRING:Q} | sed 1s,.„ # 5
env ${EXT_LIST} /bin/sh -c ’echo "$$string"; echo "$$x"’

Example 1 leads to a syntax error in the shell, as the characters are just copied.

Example 2 leads to a syntax error too, and if you leave out the last " character from${STRING} , date(1)
will be executed. The$HOMEshell variable would be evaluated, too.

Example 3 outputs each space character preceded by a backslash (or not), depending on the
implementation of the echo(1) command.

Example 4 handles correctly every string that does not startwith a dash. In that case, the result depends
on the implementation of the echo(1) command. As long as you can guarantee that your input does not
start with a dash, this form is appropriate.

Example 5 handles even the case of a leading dash correctly.

TheEXT_LIST does not need to be quoted because the quoting has already been done when adding
elements to the list.

As internal lists shall not be passed to the shell, there is noexample for it.

9.2.4. Quoting guideline

There are many possible sources of wrongly quoted variables. This section lists some of the commonly
known ones.

• Whenever you use the value of a list, think about what happensto leading or trailing whitespace. If the
list is a well-formed shell expression, you can apply the:M* modifier to strip leading and trailing
whitespace from each word. The:M operator first splits its argument according to the rules of the
shell, and then creates a new list consisting of all words that match the shell glob expression* , that is:
all. One class of situations where this is needed is when adding a variable likeCPPFLAGSto
CONFIGURE_ARGS. If the configure script invokes other configure scripts, it strips the leading and
trailing whitespace from the variable and then passes it to the other configure scripts. But these
configure scripts expect the (child)CPPFLAGSvariable to be the same as the parentCPPFLAGS. That’s
why we better pass theCPPFLAGSvalue properly trimmed. And here is how we do it:

CPPFLAGS= # empty
CPPFLAGS+= -Wundef -DPREFIX=\"${PREFIX:Q}\"

44

Chapter 9. Programming inMakefiles

CPPFLAGS+= ${MY_CPPFLAGS}

CONFIGURE_ARGS+= CPPFLAGS=${CPPFLAGS:M* :Q}

all:
echo x${CPPFLAGS:Q}x # leading and trailing whitespace
echo x${CONFIGURE_ARGS}x # properly trimmed

• The example above contains one bug: The${PREFIX} is a properly quoted shell expression, but there
is the C compiler after it, which also expects a properly quoted string (this time in C syntax). The
version above is therefore only correct if${PREFIX} does not have embedded backslashes or double
quotes. If you want to allow these, you have to add another layer of quoting to each variable that is
used as a C string literal. You cannot use the:Q operator for it, as this operator only works for the
shell.

• Whenever a variable can be empty, the:Q operator can have surprising results. Here are two
completely different cases which can be solved with the sametrick.

EMPTY= # empty
empty_test:

for i in a ${EMPTY:Q} c; do \
echo "$$i"; \

done

for_test:
.for i in a:\ a:\test.txt

echo ${i:Q}
echo "foo"

.endfor

The first example will only print two of the three lines we might have expected. This is because
${EMPTY:Q} expands to the empty string, which the shell cannot see. The workaround is to write
${EMPTY:Q}"" . This pattern can be often found as${TEST} -z ${VAR:Q} or as${TEST} -f

${FNAME:Q} (both of these are wrong).

The second example will only print three lines instead of four. The first line looks likea:\ echo

foo . This is because the backslash of the valuea:\ is interpreted as a line-continuation by make(1),
which makes the second line the arguments of the echo(1) command from the first line. To avoid this,
write ${i:Q}"" .

9.2.5. Workaround for a bug in BSD Make

The pkgsrc bmake program does not handle the following assignment correctly. In case_othervar_

contains a “-” character, one of the closing braces is included in${VAR} after this code executes.

VAR:= ${VAR:N${_othervar_:C/-//}}

For a more complex code snippet and a workaround, see the packageregress/make-quoting ,
testcasebug1 .

45

Chapter 10.

PLIST issues

ThePLIST file contains a package’s “packing list”, i.e. a list of files that belong to the package (relative
to the${PREFIX} directory it’s been installed in) plus some additional statements - see the
pkg_create(1) man page for a full list. This chapter addresses some issues that need attention when
dealing with thePLIST file (or files, see below!).

10.1. RCS ID
Be sure to add a RCS ID line as the first thing in anyPLIST file you write:

@comment $NetBSD$

10.2. Semi-automatic PLIST generation
You can use themake print-PLIST command to output a PLIST that matches any new files since the
package was extracted. SeeSection 14.16for more information on this target.

10.3. Tweaking output of make print-PLIST
If you have used any of the *-dirs packages, as explained inSection 10.8, you may have noticed that
make print-PLIST outputs a set of@comments instead of real@dirrm lines. You can also do this for
specific directories and files, so that the results of that command are very close to reality. This helpsa lot
during the update of packages.

ThePRINT_PLIST_AWKvariable takes a set of AWK patterns and actions that are usedto filter the output
of print-PLIST. You canappendany chunk of AWK scripting you like to it, but be careful with quoting.

For example, to get all files inside thelibdata/foo directory removed from the resulting PLIST:

PRINT_PLIST_AWK+= /^libdata\/foo/ { next; }

And to get all the@dirrm lines referring to a specific (shared) directory converted to @comments:

PRINT_PLIST_AWK+= /^@dirrm share\/specific/ { print "@co mment " $$0; next; }

10.4. Variable substitution in PLIST
A number of variables are substituted automatically in PLISTs when a package is installed on a system.
This includes the following variables:

46

Chapter 10. PLIST issues

${MACHINE_ARCH}, ${MACHINE_GNU_ARCH}

Some packages like emacs and perl embed information about which architecture they were built on
into the pathnames where they install their files. To handle this case, PLIST will be preprocessed
before actually used, and the symbol “${MACHINE_ARCH}” will be replaced by whatuname -p
gives. The same is done if the string${MACHINE_GNU_ARCH}is embedded in PLIST somewhere -
use this on packages that have GNU autoconf-created configure scripts.

Legacy note: There used to be a symbol “$ARCH” that was replaced by the output of uname
-m, but that’s no longer supported and has been removed.

${OPSYS} , ${LOWER_OPSYS}, ${OS_VERSION}

Some packages want to embed the OS name and version into some paths. To do this, use these
variables in thePLIST :

• ${OPSYS} - output of “uname -s”

• ${LOWER_OPSYS}- lowercase common name (eg. “solaris”)

• ${OS_VERSION} - “uname -r”

${PKGLOCALEDIR}

Packages that install locale files should list them in the PLIST as
“${PKGLOCALEDIR}/locale/de/LC_MESSAGES/...” instead of
“share/locale/de/LC_MESSAGES/...”. This properly handles the fact that different operating
systems expect locale files to be either inshare or lib by default.

For a complete list of values which are replaced by default, please look inbsd.pkg.mk (and search for
PLIST_SUBST).

If you want to change other variables not listed above, you can add variables and their expansions to this
variable in the following way, similar toMESSAGE_SUBST(seeSection 8.5):

PLIST_SUBST+= SOMEVAR="somevalue"

This replaces all occurrences of “${SOMEVAR}” in the PLIST with “somevalue”.

10.5. Man page compression
Man pages should be installed in compressed form ifMANZis set (inbsd.own.mk), and uncompressed
otherwise. To handle this in thePLIST file, the suffix “.gz” is appended/removed automatically forman
pages according toMANZandMANCOMPRESSEDbeing set or not, see above for details. This modification
of thePLIST file is done on a copy of it, notPLIST itself.

47

Chapter 10. PLIST issues

10.6. Changing PLIST source with PLIST_SRC

To use one or more files as source for thePLIST used in generating the binary package, set the variable
PLIST_SRC to the names of that file(s). The files are later concatenated using cat(1), and order of things
is important.

10.7. Platform-specific and differing PLISTs
Some packages decide to install a different set of files basedon the operating system being used. These
differences can be automatically handled by using the following files:

• PLIST.common

• PLIST.${OPSYS}

• PLIST.${MACHINE_ARCH}

• PLIST.${OPSYS}-${MACHINE_ARCH}

• PLIST.common_end

10.8. Sharing directories between packages
A “shared directory” is a directory where multiple (and unrelated) packages install files. These
directories are problematic because you have to add specialtricks in the PLIST to conditionally remove
them, or have some centralized package handle them.

Within pkgsrc, you’ll find both approaches. If a directory isshared by a few unrelated packages, it’s
often not worth to add an extra package to remove it. Therefore, one simply does:

@unexec ${RMDIR} %D/path/to/shared/directory 2>/dev/nu ll || ${TRUE}

in the PLISTs of all affected packages, instead of the regular "@dirrm" line.

However, if the directory is shared across many packages, two different solutions are available:

1. If the packages have a common dependency, the directory can be removed in that. For example, see
textproc/scrollkeeper , which removes the shared directoryshare/omf .

2. If the packages using the directory are not related at all (they have no common dependencies), a
*-dirs package is used.

From now on, we’ll discuss the second solution. To get an ideaof the *-dirs packages available, issue:

% cd .../pkgsrc
% ls -d * / * -dirs

Their use from other packages is very simple. TheUSE_DIRSvariable takes a list of package names
(without the “-dirs” part) together with the required version number (always pick the latest one when
writing new packages).

For example, if a package installs files undershare/applications , it should have the following line
in it:

48

Chapter 10. PLIST issues

USE_DIRS+= xdg-1.1

After regenerating the PLIST usingmake print-PLIST , you should get the right (commented out) lines.

Note that even if your package is using$X11BASE, it must not depend on the *-x11-dirs packages. Just
specify the name without that part and pkgsrc (in particular, mk/dirs.mk) will take care of it.

49

Chapter 11.

Buildlink methodology

Buildlink is a framework in pkgsrc that controls what headers and libraries are seen by a package’s
configure and build processes. This is implemented in a two step process:

1. Symlink headers and libraries for dependencies intoBUILDLINK_DIR , which by default is a
subdirectory ofWRKDIR.

2. Create wrapper scripts that are used in place of the normalcompiler tools that translate
-I${LOCALBASE}/include and-L${LOCALBASE}/lib into references toBUILDLINK_DIR . The
wrapper scripts also make native compiler on some operatingsystems look like GCC, so that
packages that expect GCC won’t require modifications to build with those native compilers.

This normalizes the environment in which a package is built so that the package may be built
consistently despite what other software may be installed.Please note that the normal system header and
library paths, e.g./usr/include , /usr/lib , etc., are always searched -- buildlink3 is designed to
insulate the package build from non-system-supplied software.

11.1. Converting packages to use buildlink3
The process of converting packages to use the buildlink3 framework (“bl3ifying”) is fairly
straightforward. The things to keep in mind are:

1. Ensure that the build always calls the wrapper scripts instead of the actual toolchain. Some packages
are tricky, and the only way to know for sure is the check${WRKDIR}/.work.log to see if the
wrappers are being invoked.

2. Don’t overridePREFIX from within the package Makefile, e.g. Java VMs, standalone shells, etc.,
because the code to symlink files into${BUILDLINK_DIR} looks for files relative to “pkg_info -qp
pkgname”.

3. Remember thatonly thebuildlink3.mk files that you list in a package’s Makefile are added as
dependencies for that package.

If a dependency on a particular package is required for its libraries and headers, then we replace:

DEPENDS+= foo>=1.1.0:../../category/foo

with

.include "../../category/foo/buildlink3.mk"

The buildlink3.mk files usually define the required dependencies. If you need a newer version of the
dependency when using buildlink3.mk files, then you can define it in your Makefile; for example:

50

Chapter 11. Buildlink methodology

BUILDLINK_DEPENDS.foo+= foo>=1.1.0
.include "../../category/foo/buildlink3.mk"

There are severalbuildlink3.mk files in pkgsrc/mk that handle special package issues:

• bdb.buildlink3.mk chooses either the native or a pkgsrc Berkeley DB implementation based on
the values ofBDB_ACCEPTEDandBDB_DEFAULT.

• curses.buildlink3.mk : If the system comes with neither Curses nor NCurses, this will take care
to install thedevel/ncurses package.

• krb5.buildlink3.mk uses the value ofKRB5_ACCEPTEDto choose between adding a dependency
on Heimdal or MIT-krb5 for packages that require a Kerberos 5implementation.

• motif.buildlink3.mk checks for a system-provided Motif installation or adds a dependency on
x11/lesstif or x11/openmotif .

• ossaudio.buildlink3.mk defines several variables that may be used by packages that use the
Open Sound System (OSS) API.

• pgsql.buildlink3.mk will accept either Postgres 7.3 or 7.4, whichever is found installed. See the
file for more information.

• pthread.buildlink3.mk uses the value ofPTHREAD_OPTSand checks for native pthreads or adds
a dependency ondevel/pth as needed.

• xaw.buildlink3.mk uses the value ofXAW_TYPEto choose a particular Athena widgets library.

The comments in thosebuildlink3.mk files provide a more complete description of how to use them
properly.

11.2. Writing buildlink3.mk files
A package’sbuildlink3.mk file is included by Makefiles to indicate the need to compile and link
against header files and libraries provided by the package. Abuildlink3.mk file should always
provide enough information to add the correct type of dependency relationship and include any other
buildlink3.mk files that it needs to find headers and libraries that it needs in turn.

To generate an initialbuildlink3.mk file for further editing, Rene Hexel’s
pkgtools/createbuildlink package is highly recommended. For most packages, the following
command will generate a good starting point forbuildlink3.mk files:

% cd pkgsrc/category/pkgdir

% createbuildlink >buildlink3.mk

11.2.1. Anatomy of a buildlink3.mk file

The following real-life examplebuildlink3.mk is taken frompkgsrc/graphics/tiff :

$NetBSD: buildlink3.mk,v 1.7 2004/03/18 09:12:12 jlam Ex p $

BUILDLINK_DEPTH:= ${BUILDLINK_DEPTH}+
TIFF_BUILDLINK3_MK:= ${TIFF_BUILDLINK3_MK}+

51

Chapter 11. Buildlink methodology

.if !empty(BUILDLINK_DEPTH:M+)
BUILDLINK_DEPENDS+= tiff
.endif

BUILDLINK_PACKAGES:= ${BUILDLINK_PACKAGES:Ntiff}
BUILDLINK_PACKAGES+= tiff

.if !empty(TIFF_BUILDLINK3_MK:M+)
BUILDLINK_DEPENDS.tiff+= tiff>=3.6.1
BUILDLINK_PKGSRCDIR.tiff?= ../../graphics/tiff
.endif # TIFF_BUILDLINK3_MK

.include "../../devel/zlib/buildlink3.mk"

.include "../../graphics/jpeg/buildlink3.mk"

BUILDLINK_DEPTH:= ${BUILDLINK_DEPTH:S/+$//}

The header and footer manipulateBUILDLINK_DEPTH, which is common across allbuildlink3.mk

files and is used to track at what depth we are includingbuildlink3.mk files.

The first section controls if the dependency onpkg is added.BUILDLINK_DEPENDSis the global list of
packages for which dependencies are added by buildlink3.

The second section advises pkgsrc that thebuildlink3.mk file for pkg has been included at some
point.BUILDLINK_PACKAGESis the global list of packages for whichbuildlink3.mk files have been
included. It mustalwaysbe appended to within abuildlink3.mk file.

The third section is protected from multiple inclusion and controls how the dependency onpkg is added.
Several important variables are set in the section:

• BUILDLINK_DEPENDS.pkg is the actual dependency recorded in the installed package;this should
always be set using+= to ensure that we’re appending to any pre-existing list of values. This variable
should be set to the first version of the package that had the last change in the major number of a
shared library or that had a major API change.

• BUILDLINK_PKGSRCDIR.pkg is the location of thepkg pkgsrc directory.

• BUILDLINK_DEPMETHOD.pkg (not shown above) controls whether we useBUILD_DEPENDSor
DEPENDSto add the dependency onpkg. The build dependency is selected by setting
BUILDLINK_DEPMETHOD.pkg to “build”. By default, the full dependency is used.

• BUILDLINK_INCDIRS. pkg andBUILDLINK_LIBDIRS. pkg (not shown above) are lists of
subdirectories of${BUILDLINK_PREFIX. pkg} to add to the header and library search paths. These
default to “include” and “lib” respectively.

• BUILDLINK_CPPFLAGS.pkg (not shown above) is the list of preprocessor flags to add toCPPFLAGS,
which are passed on to the configure and build phases. The “-I”option should be avoided and instead
be handled usingBUILDLINK_INCDIRS. pkg as above.

The following variables are all optionally defined within this second section (protected against multiple
inclusion) and control which package files are symlinked into ${BUILDLINK_DIR} and how their names
are transformed during the symlinking:

52

Chapter 11. Buildlink methodology

• BUILDLINK_FILES. pkg (not shown above) is a shell glob pattern relative to
${BUILDLINK_PREFIX. pkg} to be symlinked into${BUILDLINK_DIR} , e.g.include/ * .h .

• BUILDLINK_FILES_CMD. pkg (not shown above) is a shell pipeline that outputs to stdout alist of files
relative to${BUILDLINK_PREFIX. pkg} . The resulting files are to be symlinked into
${BUILDLINK_DIR} . By default, this takes the+CONTENTSof apkg and filters it through
${BUILDLINK_CONTENTS_FILTER. pkg} .

• BUILDLINK_CONTENTS_FILTER.pkg (not shown above) is a filter command that filters+CONTENTS

input into a list of files relative to${BUILDLINK_PREFIX. pkg} on stdout. By default for overwrite
packages,BUILDLINK_CONTENTS_FILTER.pkg outputs the contents of theinclude andlib

directories in the package+CONTENTS, and for pkgviews packages, it outputs any libtool archivesin
lib directories.

• BUILDLINK_TRANSFORM.pkg (not shown above) is a list of sed arguments used to transformthe
name of the source filename into a destination filename, e.g.-e "s|/curses.h|/ncurses.h|g".

The last section includes anybuildlink3.mk needed forpkg’s library dependencies. Including these
buildlink3.mk files means that the headers and libraries for these dependencies are also symlinked
into ${BUILDLINK_DIR} whenever thepkg buildlink3.mk file is included.

11.2.2. Updating BUILDLINK_DEPENDS.pkg in buildlink3.mk files

There are two situations that require increasing the dependency listed inBUILDLINK_DEPENDS.pkg

after a package update:

1. if the sonames (major number of the library version) of anyinstalled shared libraries change.

2. if the API or interface to the header files change.

In these cases,BUILDLINK_DEPENDS.pkg should be adjusted to require at least the new package
version. In some cases, the packages that depend on this new version may need theirPKGREVISIONs
increased and, if they havebuildlink3.mk files, theirBUILDLINK_DEPENDS.pkg adjusted, too. This
is needed so that binary packages made using it will require the correct package dependency and not
settle for an older one which will not contain the necessary shared libraries.

Please take careful consideration before adjustingBUILDLINK_DEPENDS.pkg as we don’t want to cause
unneeded package deletions and rebuilds. In many cases, newversions of packages work just fine with
older dependencies. SeeSection 16.1.4for more information about dependencies on other packages,
including theBUILDLINK_RECOMMENDEDandRECOMMENDEDdefinitions.

11.3. Writing builtin.mk files
Some packages in pkgsrc install headers and libraries that coincide with headers and libraries present in
the base system. Aside from abuildlink3.mk file, these packages should also include abuiltin.mk

file that includes the necessary checks to decide whether using the built-in software or the pkgsrc
software is appropriate.

The only requirements of a builtin.mk file forpkg are:

53

Chapter 11. Buildlink methodology

1. It should setUSE_BUILTIN. pkg to either “yes” or “no” after it is included.

2. It shouldnot override anyUSE_BUILTIN. pkg which is already set before thebuiltin.mk file is
included.

3. It should be written to allow multiple inclusion. This isvery important and takes careful attention to
Makefile coding.

11.3.1. Anatomy of a builtin.mk file

The following is the recommended template for builtin.mk files:

.if !defined(IS_BUILTIN.foo)
#
IS_BUILTIN.foo is set to "yes" or "no" depending on whether "foo"
genuinely exists in the system or not.
#
IS_BUILTIN.foo?= no

BUILTIN_PKG.foo should be set here if "foo" is built-in and its package
version can be determined.
#
. if !empty(IS_BUILTIN.foo:M[yY][eE][sS])
BUILTIN_PKG.foo?= foo-1.0
. endif
.endif # IS_BUILTIN.foo

.if !defined(USE_BUILTIN.foo)
USE_BUILTIN.foo?= ${IS_BUILTIN.foo}
. if defined(BUILTIN_PKG.foo)
. for _depend_ in ${BUILDLINK_DEPENDS.foo}
. if !empty(USE_BUILTIN.foo:M[yY][eE][sS])
USE_BUILTIN.foo!= \

if ${PKG_ADMIN} pmatch ’${_depend_}’ ${BUILTIN_PKG.foo} ; then \
${ECHO} "yes"; \

else \
${ECHO} "no"; \

fi
. endif
. endfor
. endif
.endif # USE_BUILTIN.foo

CHECK_BUILTIN.foo?= no
.if !empty(CHECK_BUILTIN.foo:M[nN][oO])
#
Here we place code that depends on whether USE_BUILTIN.foo is set to
"yes" or "no".
#
.endif # CHECK_BUILTIN.foo

The first section setsIS_BUILTIN. pkg depending on ifpkg really exists in the base system. This should
not be a base system software with similar functionality topkg; it should only be “yes” if the actual

54

Chapter 11. Buildlink methodology

package is included as part of the base system. This variableis only used internally within the
builtin.mk file.

The second section setsBUILTIN_PKG. pkg to the version ofpkg in the base system if it exists (if
IS_BUILTIN. pkg is “yes”). This variable is only used internally within thebuiltin.mk file.

The third section setsUSE_BUILTIN. pkg and isrequiredin all builtin.mk files. The code in this
section must make the determination whether the built-in software is adequate to satisfy the
dependencies listed inBUILDLINK_DEPENDS.pkg. This is typically done by comparing
BUILTIN_PKG. pkg against each of the dependencies inBUILDLINK_DEPENDS.pkg.
USE_BUILTIN. pkg mustbe set to the correct value by the end of thebuiltin.mk file. Note that
USE_BUILTIN. pkg may be “yes” even ifIS_BUILTIN. pkg is “no” because we may make the
determination that the built-in version of the software is similar enough to be used as a replacement.

The last section is guarded byCHECK_BUILTIN. pkg, and includes code that uses the value of
USE_BUILTIN. pkg set in the previous section. This typically includes, e.g.,adding additional
dependency restrictions and listing additional files to symlink into ${BUILDLINK_DIR} (via
BUILDLINK_FILES. pkg).

11.3.2. Global preferences for native or pkgsrc software

When building packages, it’s possible to choose whether to set a global preference for using either the
built-in (native) version or the pkgsrc version of softwareto satisfy a dependency. This is controlled by
settingPREFER_PKGSRCandPREFER_NATIVE. These variables take values of either “yes”, “no”, or a
list of packages.PREFER_PKGSRCtells pkgsrc to use the pkgsrc versions of software, while
PREFER_NATIVEtells pkgsrc to use the built-in versions. Preferences are determined by the most
specific instance of the package in eitherPREFER_PKGSRCor PREFER_NATIVE. If a package is specified
in neither or in both variables, thenPREFER_PKGSRChas precedence overPREFER_NATIVE. For
example, to require using pkgsrc versions of software for all but the most basic bits on a NetBSD system,
you can set:

PREFER_PKGSRC= yes
PREFER_NATIVE= getopt skey tcp_wrappers

A packagemusthave abuiltin.mk file to be listed inPREFER_NATIVE, otherwise it is simply ignored
in that list.

55

Chapter 12.

The pkginstall framework

This chapter describes the framework known aspkginstall , whose key features are:

• Generic installation and manipulation of directories and files outside the pkgsrc-handled tree,
LOCALBASE.

• Automatic handling of configuration files during installation, provided that packages are correctly
designed.

• Generation and installation of system startup scripts.

• Registration of system users and groups.

• Registration of system shells.

• Automatic updating of fonts databases.

The following sections inspect each of the above points in detail.

You may be thinking that many of the things described here could be easily done with simple code in the
package’s post-installation target (post-install). This is incorrect, as the code in them is only
executed when building from source. Machines using binary packages could not benefit from it at all (as
the code itself could be unavailable). Therefore, the only way to achieve any of the items described above
is by means of the installation scripts, which are automatically generated by pkginstall.

12.1. Files and directories outside the installation prefix
As you already know, thePLIST file holds a list of files and directories that belong to a package. The
names used in it are relative to the installation prefix (${PREFIX}), which means that it cannot register
files outside this directory (absolute path names are not allowed). Despite this restriction, some packages
need to install files outside this location; e.g., under${VARBASE} or ${PKG_SYSCONFDIR}.

The only way to achieve this is to create such files during installation time by using the installation
scripts. These scripts can run arbitrary commands, so they have the potential to create and manage files
anywhere in the file system. Here is where pkginstall comes into play: it provides generic scripts to
abstract the manipulation of such files and directories based on variables set in the package’sMakefile .
The rest of this section describes these variables.

12.1.1. Directory manipulation

The following variables can be set to request the creation ofdirectories anywhere in the file system:

• MAKE_DIRSandOWN_DIRScontain a list of directories that should be created and should attempt to be
destroyed by the installation scripts. The difference between the two is that the latter prompts the

56

Chapter 12. The pkginstall framework

administrator to remove any directories that may be left after deinstallation (because they were not
empty), while the former does not.

• MAKE_DIRS_PERMSandOWN_DIRS_PERMScontain a list of tuples describing which directories
should be created and should attempt to be destroyed by the installation scripts. Each tuple holds the
following values, separated by spaces: the directory name,its owner, its group and its numerical mode.
For example:

MAKE_DIRS_PERMS+= ${VARBASE}/foo/private ${ROOT_USER} ${ROOT_GROUP} 0700

The difference between the two is exactly the same as their non-PERMScounterparts.

12.1.2. File manipulation

Creating non-empty files outside the installation prefix is tricky because thePLIST forces all files to be
inside it. To overcome this problem, the only solution is to extract the file in the known place (i.e., inside
the installation prefix) and copy it to the appropriate location during installation (done by the installation
scripts generated by pkginstall). We will call the former the master filein the following paragraphs,
which describe the variables that can be used to automatically and consistently handle files outside the
installation prefix:

• CONF_FILESandSUPPORT_FILESare pairs of master and target files. During installation time, the
master file is copied to the target one if and only if the latterdoes not exist. Upon deinstallation, the
target file is removed provided that it was not modified by the installation.

The difference between the two is that the latter prompts theadministrator to remove any files that
may be left after deinstallation (because they were not empty), while the former does not.

• CONF_FILES_PERMSandSUPPORT_FILES_PERMScontain tuples describing master files as well as
their target locations. For each of them, it also specifies their owner, their group and their numeric
permissions, in this order. For example:

SUPPORT_FILES_PERMS+= ${PREFIX}/share/somefile ${VARB ASE}/somefile ${ROOT_USER} ${ROOT_GROUP}

The difference between the two is exactly the same as their non-PERMScounterparts.

12.2. Configuration files
Configuration files are special in the sense that they are installed in their own specific directory,
PKG_SYSCONFDIR, and need special treatment during installation (most of which is automated by
pkginstall). The main concept you must bear in mind is that files marked as configuration files are
automatically copied to the right place (somewhere insidePKG_SYSCONFDIR) during installationif and
only if they didn’t exist before. Similarly, they will not be removed if they have local modifications. This
ensures that administrators never lose any custom changes they may have made.

12.2.1. How PKG_SYSCONFDIR is set

As said before, thePKG_SYSCONFDIRvariable specifies where configuration files shall be installed. Its
contents are set based upon the following variables:

57

Chapter 12. The pkginstall framework

• PKG_SYSCONFBASE: The configuration’s root directory. Defaults to${PREFIX}/etc although it may
be overridden by the user to point to his preferred location (e.g.,/etc , /etc/pkg , etc.). Packages
must not use it directly.

• PKG_SYSCONFSUBDIR: A subdirectory ofPKG_SYSCONFBASEunder which the configuration files for
the package being built shall be installed. The definition ofthis variable only makes sense in the
package’sMakefile (i.e., it is not user-customizable).

As an example, consider the Apache package,www/apache2 , which places its configuration files
under thehttpd/ subdirectory ofPKG_SYSCONFBASE. This should be set in the package Makefile.

• PKG_SYSCONFVAR: Specifies the name of the variable that holds this package’sconfiguration directory
(if different fromPKG_SYSCONFBASE). It defaults toPKGBASE’s value, and is always prefixed with
PKG_SYSCONFDIR.

• PKG_SYSCONFDIR.${PKG_SYSCONFVAR}: Holds the directory where the configuration files for the
package identified byPKG_SYSCONFVAR’s shall be placed.

Based on the above variables, pkginstall determines the value ofPKG_SYSCONFDIR, which is theonly
variable that can be used within a package to refer to its configuration directory. The algorithm used to
set its value is basically the following:

1. If PKG_SYSCONFDIR.${PKG_SYSCONFVAR}is set, its value is used.

2. If the previous variable is not defined butPKG_SYSCONFSUBDIRis set in the package’sMakefile ,
the resulting value is${PKG_SYSCONFBASE}/${PKG_SYSCONFSUBDIR}.

3. Otherwise, it is set to${PKG_SYSCONFBASE}.

It is worth mentioning that${PKG_SYSCONFDIR}is automatically added toOWN_DIRS. See
Section 12.1.1what this means.

12.2.2. Telling the software where configuration files are

Given that pkgsrc (and users!) expect configuration files to be in a known place, you need to teach each
package where it shall install its files. In some cases you will have to patch the package Makefiles to
achieve it. If you are lucky, though, it may be as easy as passing an extra flag to the configuration script;
this is the case of GNU Autoconf- generated files:

CONFIGURE_ARGS+= --sysconfdir=${PKG_SYSCONFDIR}

Note that this specifies where the package has tolook for its configuration files, not where they will be
originally installed (although the difference is never explicit, unfortunately).

12.2.3. Patching installations

As said before, pkginstall automatically handles configuration files. This means thatthe packages
themselves must not touch the contents of${PKG_SYSCONFDIR} directly . Bad news is that many
software installation scripts will, out of the box, mess with the contents of that directory. So what is the
correct procedure to fix this issue?

58

Chapter 12. The pkginstall framework

You must teach the package (usually by manually patching it)to install any configuration files under the
examples hierarchy,share/examples/${PKGBASE}/ . This way, thePLIST registers them and the
administrator always has the original copies available.

Once the required configuration files are in place (i.e., under the examples hierarchy), the pkginstall
framework can use them as master copies during the package installation to update what is in
${PKG_SYSCONFDIR}. To achieve this, the variablesCONF_FILESandCONF_FILES_PERMSare used.
Check outSection 12.1.2for information about their syntax and their purpose. Here is an example, taken
from themail/mutt package:

EGDIR= ${PREFIX}/share/doc/mutt/samples
CONF_FILES= ${EGDIR}/Muttrc ${PKG_SYSCONFDIR}/Muttrc

Note that theEGDIRvariable is specific to that package and has no meaning outside it.

12.2.4. Disabling handling of configuration files

The automatic copying of config files can be toggled by settingthe environment variablePKG_CONFIG

prior to package installation.

12.3. System startup scripts
System startup scripts are special files because they must beinstalled in a place known by the underlying
OS, usually outside the installation prefix. Therefore, thesame rules described inSection 12.1apply, and
the same solutions can be used. However, pkginstall provides a special mechanism to handle these files.

In order to provide system startup scripts, the package has to:

1. Store the script inside${FILESDIR} , with the.sh suffix appended. Considering theprint/cups

package as an example, it has acupsd.sh in its files directory.

2. Tell pkginstall to handle it, appending the name of the script, without its extension, to the
RCD_SCRIPTSvariable. Continuing the previous example:

RCD_SCRIPTS+= cupsd

Once this is done, pkginstall will do the following steps foreach script in an automated fashion:

1. Process the file found in the files directory applying all the substitutions described in the
FILES_SUBST variable.

2. Copy the script from the files directory to the examples hierarchy,
${PREFIX}/share/examples/rc.d/ . Note that this master file must be explicitly registered in
thePLIST .

3. Add code to the installation scripts to copy the startup script from the examples hierarchy into the
system-wide startup scripts directory.

59

Chapter 12. The pkginstall framework

12.3.1. Disabling handling of system startup scripts

The automatic copying of config files can be toggled by settingthe environment variable
PKG_RCD_SCRIPTSprior to package installation. Note that the scripts will bealways copied inside the
examples hierarchy,${PREFIX}/share/examples/rc.d/ , no matter what the value of this variable is.

12.4. System users and groups
If a package needs to create special users and/or groups during installation, it can do so by using the
pkginstall framework.

Users can be created by adding entries to thePKG_USERSvariable. Each entry has the following syntax,
which mimics/etc/passwd :

user:group[:[userid][:[descr][:[home][:shell]]]]

Only the user and group are required; everything else is optional, but the colons must be in the right
places when specifying optional bits. By default, a new userwill have home directory/nonexistent ,
and login shell/sbin/nologin unless they are specified as part of the user element. Note that if the
description contains spaces, then spaces should be backslash-escaped, as in:

foo:foogrp::The\ Foomister

Similarly, groups can be created using thePKG_GROUPSvariable, whose syntax is:

group[:groupid]

As before, only the group name is required; the numeric identifier is optional.

12.5. System shells
Packages that install system shells should register them inthe shell database,/etc/shells , to make
things easier to the administrator. This must be done from the installation scripts to keep binary packages
working on any system. pkginstall provides an easy way to accomplish this task.

When a package provides a shell interpreter, it has to set thePKG_SHELLvariable to its absolute file
name. This will add some hooks to the installation scripts tohandle it. Consider the following example,
taken fromshells/zsh :

PKG_SHELL= ${PREFIX}/bin/zsh

12.5.1. Disabling shell registration

The automatic registration of shell interpreters can be disabled by the administrator by setting the
PKG_REGISTER_SHELLSenvironment variable toNO.

60

Chapter 12. The pkginstall framework

12.6. Fonts
Packages that install X11 fonts should update the database files that index the fonts within each fonts
directory. This can easily be accomplished within the pkginstall framework.

When a package installs X11 fonts, it must list the directories in which fonts are installed in the
FONTS_DIRS.type variables, wheretype can be one of “ttf”, “type1” or “x11”. This will add hooks to
the installation scripts to run the appropriate commands toupdate the fonts database files within each of
those directories. For convenience, if the directory path is relative, it is taken to be relative to the
package’s installation prefix. Consider the following example, taken fromfonts/dbz-ttf :

FONTS_DIRS.ttf= ${PREFIX}/lib/X11/fonts/TTF

12.6.1. Disabling automatic update of the fonts databases

The automatic update of fonts databases can be disabled by the administrator by setting the
PKG_UPDATE_FONTS_DBenvironment variable toNO.

61

Chapter 13.

Options handling

Many packages have the ability to be built to support different sets of features.bsd.options.mk is a
framework in pkgsrc that provides generic handling of thoseoptions that determine different ways in
which the packages can be built. It’s possible for the user tospecify exactly which sets of options will be
built into a package or to allow a set of global default options apply.

13.1. Global default options
Global default options are listed inPKG_DEFAULT_OPTIONS, which is a list of the options that should be
built into every package if that option is supported. This variable should be set in/etc/mk.conf .

13.2. Converting packages to use bsd.options.mk

The following example shows howbsd.options.mk should be used by the hypothetical “wibble”
package, either in the packageMakefile , or in a file, e.g.options.mk , that is included by the main
packageMakefile .

PKG_OPTIONS_VAR= PKG_OPTIONS.wibble
PKG_SUPPORTED_OPTIONS= wibble-foo ldap
PKG_OPTIONS_OPTIONAL_GROUPS= database
PKG_OPTIONS_GROUP.database= mysql pgsql
PKG_SUGGESTED_OPTIONS= wibble-foo
PKG_OPTIONS_LEGACY_VARS+= WIBBLE_USE_OPENLDAP:ldap
PKG_OPTIONS_LEGACY_OPTS+= foo:wibble-foo

.include "../../mk/bsd.prefs.mk"

this package was previously named wibble2
.if defined(PKG_OPTIONS.wibble2)
PKG_LEGACY_OPTIONS+= ${PKG_OPTIONS.wibble2}
PKG_OPTIONS_DEPRECATED_WARNINGS+= \

"Deprecated variable PKG_OPTIONS.wibble2 used, use "${PK G_OPTIONS_VAR:Q}" instead."
.endif

.include "../../mk/bsd.options.mk"

Package-specific option-handling

###
FOO support
###
.if !empty(PKG_OPTIONS:Mwibble-foo)

62

Chapter 13. Options handling

CONFIGURE_ARGS+= --enable-foo
.endif

###
LDAP support
###
.if !empty(PKG_OPTIONS:Mldap)
. include "../../databases/openldap/buildlink3.mk"
CONFIGURE_ARGS+= --enable-ldap=${BUILDLINK_PREFIX.op enldap}
.endif

###
database support
###
.if !empty(PKG_OPTIONS:Mmysql)
. include "../../mk/mysql.buildlink3.mk"
.endif
.if !empty(PKG_OPTIONS:Mpgsql)
. include "../../mk/pgsql.buildlink3.mk"
.endif

The first section contains the information about which buildoptions are supported by the package, and
any default options settings if needed.

1. PKG_OPTIONS_VARis the name of the make(1) variable that the user can set to override the default
options. It should be set to PKG_OPTIONS.pkgbase. Do not set it to
PKG_OPTIONS.${PKGBASE}, sincePKGBASEis set afterPKG_OPTIONS_VARis used.

2. PKG_SUPPORTED_OPTIONSis a list of build options supported by the package.

3. PKG_OPTIONS_OPTIONAL_GROUPSis a list of names of groups of mutually exclusive options. The
options in each group are listed inPKG_OPTIONS_GROUP.groupname. The most specific setting of
any option from the group takes precedence over all other options in the group. Options from the
groups will be automatically added toPKG_SUPPORTED_OPTIONS.

4. PKG_OPTIONS_REQUIRED_GROUPSis like PKG_OPTIONS_OPTIONAL_GROUPS, but building the
packages will fail if no option from the group is selected.

5. PKG_OPTIONS_NONEMPTY_SETSis a list of names of sets of options. At least one option from each
set must be selected. The options in each set are listed inPKG_OPTIONS_SET.setname. Options
from the sets will be automatically added toPKG_SUPPORTED_OPTIONS. Building the package will
fail if no option from the set is selected.

6. PKG_SUGGESTED_OPTIONSis a list of build options which are enabled by default.

7. PKG_OPTIONS_LEGACY_VARSis a list of “USE_VARIABLE:option” pairs that map legacy
/etc/mk.conf variables to their option counterparts. Pairs should be added with “+=” to keep the
listing of global legacy variables. A warning will be issuedif the user uses a legacy variable.

8. PKG_OPTIONS_LEGACY_OPTSis a list of “old-option:new-option” pairs that map options that
have been renamed to their new counterparts. Pairs should beadded with “+=” to keep the listing of
global legacy options. A warning will be issued if the user uses a legacy option.

63

Chapter 13. Options handling

9. PKG_LEGACY_OPTIONSis a list of options implied by deprecated variables used. This can be used
for cases that neitherPKG_OPTIONS_LEGACY_VARSnorPKG_OPTIONS_LEGACY_OPTScan handle,
e. g. whenPKG_OPTIONS_VARis renamed.

10.PKG_OPTIONS_DEPRECATED_WARNINGSis a list of warnings about deprecated variables or options
used, and what to use instead.

A package should never modifyPKG_DEFAULT_OPTIONSor the variable named inPKG_OPTIONS_VAR.
These are strictly user-settable. To suggest a default set of options, usePKG_SUGGESTED_OPTIONS.

PKG_OPTIONS_VARmust be defined before includingbsd.options.mk . If none of
PKG_SUPPORTED_OPTIONS, PKG_OPTIONS_OPTIONAL_GROUPS, and
PKG_OPTIONS_REQUIRED_GROUPSare defined (as can happen with platform-specific options if none of
them is supported on the current platform),PKG_OPTIONSis set to the empty list and the package is
otherwise treated as not using the options framework.

After the inclusion ofbsd.options.mk , the variablePKG_OPTIONScontains the list of selected build
options, properly filtered to remove unsupported and duplicate options.

The remaining sections contain the logic that is specific to each option. The correct way to check for an
option is to check whether it is listed inPKG_OPTIONS:

.if !empty(PKG_OPTIONS:M option)

13.3. Option Names
Options that enable similar features in different packages(like optional support for a library) should use
a common name in all packages that support it (like the name ofthe library). If another package already
has an option with the same meaning, use the same name.

Options that enable features specific to one package, where it’s unlikely that another (unrelated) package
has the same (or a similar) optional feature, should use a name prefixed withpkgname- .

If a group of related packages share an optional feature specific to that group, prefix it with the name of
the “main” package (e. g.djbware-errno-hack).

For new options, add a line tomk/defaults/options.description . Lines have two fields,
separated by tab. The first field is the option name, the secondits description. The description should be a
whole sentence (starting with an uppercase letter and ending with a period) that describes what enabling
the option does. E. g. “Enable ispell support.” The file is sorted by option names.

64

Chapter 14.

The build process

14.1. Introduction
This chapter gives a detailed description on how a package isbuilt. Building a package is separated into
differentphases(for examplefetch , build , install), all of which are described in the following
sections. Each phase is splitted into so-calledstages, which take the name of the containing phase,
prefixed by one ofpre- , do- or post- . (Examples arepre-configure , post-build .) Most of the
actual work is done in thedo- * stages.

The basic steps for building a program are always the same. First the program’s source (distfile) must be
brought to the local system and then extracted. After any pkgsrc-specific patches to compile properly are
applied, the software can be configured, then built (usuallyby compiling), and finally the generated
binaries, etc. can be put into place on the system.

14.2. Program location
Before outlining the process performed by the NetBSD package system in the next section, here’s a brief
discussion on where programs are installed, and which variables influence this.

The automatic variablePREFIX indicates where all files of the final program shall be installed. It is
usually set toLOCALBASE(/usr/pkg), or CROSSBASEfor pkgs in the “cross” category. The value of
PREFIX needs to be put into the various places in the program’s source where paths to these files are
encoded. SeeSection 8.3andSection 16.3.1for more details.

When choosing which of these variables to use, follow the following rules:

• PREFIX always points to the location where the current pkg will be installed. When referring to a
pkg’s own installation path, use “${PREFIX}”.

• LOCALBASEis where all non-X11 pkgs are installed. If you need to construct a -I or -L argument to the
compiler to find includes and libraries installed by anothernon-X11 pkg, use “${LOCALBASE}”.

• X11BASEis where the actual X11 distribution (from xsrc, etc.) is installed. When looking forstandard
X11 includes (not those installed by a pkg), use “${X11BASE}”.

• X11-based packages are special in that they may be installedin eitherX11BASEor LOCALBASE.

Usually, X11 packages should be installed underLOCALBASEwhenever possible. Note that you will
need to include../../mk/x11.buildlink3.mk in them to request the presence of X11 and to get
the right compilation flags.

65

Chapter 14. The build process

Even though, there are some packages that cannot be installed underLOCALBASE: those that come
with app-defaults files. These packages are special and theymust be placed underX11BASE. To
accomplish this, set eitherUSE_X11BASEor USE_IMAKEin your package.

Some notes: If you need to find includes or libraries installed by a pkg that hasUSE_IMAKEor
USE_X11BASEin its pkgMakefile , you need to look inboth${X11BASE} and${LOCALBASE}. To
force installation of all X11 packages inLOCALBASE, thepkgtools/xpkgwedge package is enabled
by default.

• X11PREFIX should be used to refer to the installed location of an X11 package.X11PREFIX will be
set toX11BASEif xpkgwedge is not installed, and toLOCALBASEif xpkgwedge is installed.

• If xpkgwedge is installed, it is possible to have some packages installed inX11BASEand some in
LOCALBASE. To determine the prefix of an installed package, theEVAL_PREFIXdefinition can be used.
It takes pairs in the format “DIRNAME=<package>”, and the make(1) variableDIRNAMEwill be set to
the prefix of the installed package <package>, or “${X11PREFIX}” if the package is not installed.

This is best illustrated by example.

The following lines are taken frompkgsrc/wm/scwm/Makefile :

EVAL_PREFIX+= GTKDIR=gtk+
CONFIGURE_ARGS+= --with-guile-prefix=${LOCALBASE:Q}
CONFIGURE_ARGS+= --with-gtk-prefix=${GTKDIR:Q}
CONFIGURE_ARGS+= --enable-multibyte

Specific defaults can be defined for the packages evaluated using EVAL_PREFIX, by using a definition
of the form:

GTKDIR_DEFAULT= ${LOCALBASE}

whereGTKDIRcorresponds to the first definition in theEVAL_PREFIXpair.

• Within ${PREFIX} , packages should install files according to hier(7), with the exception that manual
pages go into${PREFIX}/man , not${PREFIX}/share/man .

14.3. Directories used during the build process
When building a package, a number of directories is used to store source files, temporary files,
pkgsrc-internal files, and so on. These directories are explained here.

Some of the directory variables contain relative pathnames. There are two common base directories for
these relative directories:PKGSRCDIR/PKGPATHis used for directories that are pkgsrc-specific.WRKSRC

is used for directories inside the package itself.

PKGSRCDIR

This is an absolute pathname that points to the pkgsrc root directory. Generally, you don’t need it.

PKGPATH

This is a pathname relative toPKGSRCDIRthat points to the current package.

66

Chapter 14. The build process

WRKDIR

This is an absolute pathname pointing to the directory whereall work takes place. The distfiles are
extraced to this directory. It also contains temporary directories and log files used by the various
pkgsrc frameworks, likebuildlink or thewrappers.

WRKSRC

This is an absolute pathname pointing to the directory wherethe distfiles are extracted. It is usually
a direct subdirectory ofWRKDIR, and often it’s the only directory entry that isn’t hidden. This
variable may be changed by a packageMakefile .

14.4. Running a phase
You can run a particular phase by typingmake phase, wherephaseis the name of the phase. This will
automatically run all phases that are required for this phase. The default phase isbuild , that is, when
you runmake without parameters in a package directory, the package willbe built, but not installed.

14.5. The fetch phase
This will check if the file(s) given in the variablesDISTFILES andPATCHFILES(as defined in the
package’s Makefile) are present on the local system in/usr/pkgsrc/distfiles . If they are not
present, an attempt will be made to fetch them using commandsof the form:

${FETCH_CMD} ${FETCH_BEFORE_ARGS} ${site}${file} ${FET CH_AFTER_ARGS}

where ${site} varies through several possibilities in turn: first, MASTER_SITE_OVERRIDEis tried, then
the sites specified in eitherSITES_file if defined, elseMASTER_SITESor PATCH_SITES, as applies,
then finally the value ofMASTER_SITE_BACKUP. The order of all except the first can be optionally sorted
by the user, via setting eitherMASTER_SORT_AWKor MASTER_SORT_REGEX.

14.6. The checksum phase
After the distfile(s) are fetched, their checksum is generated and compared with the checksums stored in
the distinfo file. If the checksums don’t match, the build is aborted. This is to ensure the same distfile is
used for building, and that the distfile wasn’t changed, e.g.by some malign force, deliberately changed
distfiles on the master distribution site or network lossage.

14.7. The extract phase
When the distfiles are present on the local system, they need to be extracted, as they usually come in the
form of some compressed archive format.

By default, allDISTFILES are extracted. If you only need some of them, you can set theEXTRACT_ONLY

variable to the list of those files.

67

Chapter 14. The build process

Extracting the files is usually done by a little program,mk/scripts/extract , which already knows
how to extract various archive formats, so most likely you will not need to change anything here. But if
you need, the following variables may help you:

EXTRACT_OPTS_{BIN,LHA,PAX,RAR,TAR,ZIP,ZOO}

Use these variables to override the default options for an extract command, which are defined in
mk/scripts/extract .

EXTRACT_USING

This variable can be set topax , tar or an absolute pathname pointing to the command with which
tar archives should be extracted.

If the extract program doesn’t serve your needs, you can also override theEXTRACT_CMDvariable,
which holds the command used for extracting the files. This command is executed in the${WRKSRC}

directory. During execution of this command, the shell variableextract_file holds the absolute
pathname of the file that is going to be extracted.

And if that still does not suffice, you can override thedo-extract target in the package Makefile.

14.8. The patch phase
After extraction, all the patches named by thePATCHFILES, those present in the patches subdirectory of
the package as well as in $LOCALPATCHES/$PKGPATH (e.g.
/usr/local/patches/graphics/png) are applied. Patchfiles ending in.Z or .gz are uncompressed
before they are applied, files ending in.orig or .rej are ignored. Any special options to patch(1) can
be handed inPATCH_DIST_ARGS. SeeSection 8.3for more details.

By default patch(1) is given special args to make it fail if the patches apply with some lines of fuzz.
Please fix (regen) the patches so that they apply cleanly. Therationale behind this is that patches that
don’t apply cleanly may end up being applied in the wrong place, and cause severe harm there.

14.9. The tools phase
This is covered inChapter 15.

14.10. The wrapper phase
[TODO]

14.11. The configure phase
Most pieces of software need information on the header files,system calls, and library routines which are
available on the platform they run on. The process of determining this information is known as
configuration, and is usually automated. In most cases, a script is supplied with the distfiles, and its
invocation results in generation of header files, Makefiles,etc.

68

Chapter 14. The build process

If the package contains a configure script, this can be invoked by settingHAS_CONFIGUREto “yes”. If
the configure script is a GNU autoconf script, you should setGNU_CONFIGUREto “yes” instead. What
happens in theconfigurephase is roughly:

.for d in ${CONFIGURE_DIRS}
cd ${WRKSRC} && cd ${d} && env ${CONFIGURE_ENV} \

${CONFIGURE_SCRIPT} ${CONFIGURE_ARGS}
.endfor

CONFIGURE_DIRS(default: “.”) is a list of pathnames relative toWRKSRC. In each of these directories,
the configure script is run with the environmentCONFIGURE_ENVand argumentsCONFIGURE_ARGS.
The variablesCONFIGURE_ENV, CONFIGURE_SCRIPT(default: “./configure”) andCONFIGURE_ARGS

may all be changed by the package.

If the program uses anImakefile for configuration, the appropriate steps can be invoked by setting
USE_IMAKEto “yes”. (If you only want the package installed in${X11PREFIX} but xmkmf not being
run, setUSE_X11BASEinstead.)

14.12. The build phase
For building a package, a rough equivalent of the following code is executed.

.for d in ${BUILD_DIRS}
cd ${WRKSRC} && cd ${d} && env ${MAKE_ENV} \

${MAKE_PROGRAM} ${BUILD_MAKE_FLAGS} \
-f ${MAKEFILE} ${BUILD_TARGET}

.endfor

BUILD_DIRS (default: “.”) is a list of pathnames relative toWRKSRC. In each of these directories,
MAKE_PROGRAMis run with the environmentMAKE_ENVand argumentsBUILD_MAKE_FLAGS. The
variablesMAKE_ENV, BUILD_MAKE_FLAGS, MAKEFILEandBUILD_TARGETmay all be changed by the
package.

The default value ofMAKE_PROGRAMis “gmake” if USE_TOOLScontains “gmake”, “make” otherwise.
The default value ofMAKEFILE is “Makefile”, andBUILD_TARGETdefaults to “all”.

14.13. The test phase
[TODO]

14.14. The install phase
Once the build stage has completed, the final step is to install the software in public directories, so users
can access the programs and files.

In the install phase, a rough equivalent of the following code is executed.Additionally, before and after
this code, much magic is performed to do consistency checks,registering the package, and so on.

.for d in ${INSTALL_DIRS}

69

Chapter 14. The build process

cd ${WRKSRC} && cd ${d} && env ${MAKE_ENV} \
${MAKE_PROGRAM} ${INSTALL_MAKE_FLAGS} \

-f ${MAKEFILE} ${BUILD_TARGET}
.endfor

The variable’s meanings are analogous to the ones in thebuild phase.INSTALL_DIRS defaults to
BUILD_DIRS . INSTALL_TARGETis “install” by default, plus “install.man” ifUSE_IMAKEis defined.

In the install phase, the following variables are useful. They are all variations of the install(1) command
that have the owner, group and permissions preset.INSTALL is the plain install command. The
specialized variants, together with their intended use, are:

INSTALL_PROGRAM_DIR

directories that contain binaries

INSTALL_SCRIPT_DIR

directories that contain scripts

INSTALL_LIB_DIR

directories that contain shared and static libraries

INSTALL_DATA_DIR

directories that contain data files

INSTALL_MAN_DIR

directories that contain man pages

INSTALL_PROGRAM

binaries that can be stripped from debugging symbols

INSTALL_SCRIPT

binaries that cannot be stripped

INSTALL_GAME

game binaries

INSTALL_LIB

shared and static libraries

INSTALL_DATA

data files

INSTALL_GAME_DATA

data files for games

70

Chapter 14. The build process

INSTALL_MAN

man pages

Some other variables are:

INSTALLATION_DIRS

A list of directories relative toPREFIX that are created by pkgsrc at the beginning of theinstall
phase. If this variable is set,NO_MTREE=“yes” is assumed, which means that the package claims to
create all needed directories itself before installing files to it. Therefore this variable should only be
set inMakefile s that are under control of the package’s author.

14.15. The package phase
[TODO]

14.16. Other helpful targets

pre/post-*

For any of the main targets described in the previous section, two auxiliary targets exist with “pre-”
and “post-” used as a prefix for the main target’s name. These targets are invoked before and after
the main target is called, allowing extra configuration or installation steps be performed from a
package’s Makefile, for example, which a program’s configurescript or install target omitted.

do-*

Should one of the main targets do the wrong thing, and should there be no variable to fix this, you
can redefine it with the do-* target. (Note that redefining thetarget itself instead of the do-* target is
a bad idea, as the pre-* and post-* targets won’t be called anymore, etc.) You will not usually need
to do this.

reinstall

If you did amake install and you noticed some file was not installed properly, you can repeat the
installation with this target, which will ignore the “already installed” flag.

deinstall

This target does a pkg_delete(1) in the current directory, effectively de-installing the package. The
following variables can be used to tune the behaviour:

PKG_VERBOSE

Add a "-v" to the pkg_delete(1) command.

DEINSTALLDEPENDS

Remove all packages that require (depend on) the given package. This can be used to remove
any packages that may have been pulled in by a given package, e.g. if make deinstall

71

Chapter 14. The build process

DEINSTALLDEPENDS=1 is done inpkgsrc/x11/kde , this is likely to remove whole
KDE. Works by adding “-R” to the pkg_delete(1) command line.

update

This target causes the current package to be updated to the latest version. The package and all
depending packages first get de-installed, then current versions of the corresponding packages get
compiled and installed. This is similar to manually noting which packages are currently installed,
then performing a series ofmake deinstallandmake install (or whateverUPDATE_TARGETis set
to) for these packages.

You can use the “update” target to resume package updating incase a previousmake updatewas
interrupted for some reason. However, in this case, make sure you don’t callmake cleanor
otherwise remove the list of dependent packages inWRKDIR. Otherwise, you lose the ability to
automatically update the current package along with the dependent packages you have installed.

Resuming an interruptedmake updatewill only work as long as the package tree remains
unchanged. If the source code for one of the packages to be updated has been changed, resuming
make updatewill most certainly fail!

The following variables can be used either on the command line or in /etc/mk.conf to alter the
behaviour ofmake update:

UPDATE_TARGET

Install target to recursively use for the updated package and the dependent packages. Defaults
to DEPENDS_TARGETif set, “install” otherwise formake update. e.g.make update
UPDATE_TARGET=package

NOCLEAN

Don’t clean up after updating. Useful if you want to leave thework sources of the updated
packages around for inspection or other purposes. Be sure you eventually clean up the source
tree (see the “clean-update” target below) or you may run into troubles with old source code
still lying around on your nextmakeor make update.

REINSTALL

Deinstall each package before installing (makingDEPENDS_TARGET). This may be necessary
if the “clean-update” target (see below) was called after interrupting a runningmake update.

DEPENDS_TARGET

Allows you to disable recursion and hardcode the target for packages. The default is “update”
for the update target, facilitating a recursive update of prerequisite packages. Only set
DEPENDS_TARGETif you want to disable recursive updates. UseUPDATE_TARGETinstead to
just set a specific target for each package to be installed during make update(see above).

clean-update

Clean the source tree for all packages that would get updatedif make updatewas called from the
current directory. This target should not be used if the current package (or any of its depending

72

Chapter 14. The build process

packages) have already been de-installed (e.g., after calling make update) or you may lose some
packages you intended to update. As a rule of thumb: only use this targetbeforethe first time you
runmake updateand only if you have a dirty package tree (e.g., if you usedNOCLEAN).

If you are unsure about whether your tree is clean, you can either perform amake cleanat the top
of the tree, or use the following sequence of commands from the directory of the package you want
to update (beforerunningmake updatefor the first time, otherwise you lose all the packages you
wanted to update!):

make clean-update

make clean CLEANDEPENDS=YES

make update

The following variables can be used either on the command line or in /etc/mk.conf to alter the
behaviour ofmake clean-update:

CLEAR_DIRLIST

After make clean, do not reconstruct the list of directories to update for this package. Only use
this if make updatesuccessfully installed all packages you wanted to update. Normally, this is
done automatically onmake update, but may have been suppressed by theNOCLEANvariable
(see above).

info

This target invokes pkg_info(1) for the current package. You can use this to check which version of
a package is installed.

readme

This target generates aREADME.html file, which can be viewed using a browser such as
www/mozilla or www/links . The generated files contain references to any packages which are in
thePACKAGESdirectory on the local host. The generated files can be made torefer to URLs based
on FTP_PKG_URL_HOSTandFTP_PKG_URL_DIR. For example, if I wanted to generate
README.html files which pointed to binary packages on the local machine, in the directory
/usr/packages , setFTP_PKG_URL_HOST=file://localhost and
FTP_PKG_URL_DIR=/usr/packages . The${PACKAGES}directory and its subdirectories will be
searched for all the binary packages.

readme-all

Use this target to create a fileREADME-all.html which contains a list of all packages currently
available in the NetBSD Packages Collection, together withthe category they belong to and a short
description. This file is compiled from thepkgsrc/ * /README.html files, so be sure to run this
after amake readme.

cdrom-readme

This is very much the same as the “readme” target (see above),but is to be used when generating a
pkgsrc tree to be written to a CD-ROM. This target also producesREADME.html files, and can be
made to refer to URLs based onCDROM_PKG_URL_HOSTandCDROM_PKG_URL_DIR.

73

Chapter 14. The build process

show-distfiles

This target shows which distfiles and patchfiles are needed tobuild the package. (DISTFILES and
PATCHFILES, but notpatches/ *)

show-downlevel

This target shows nothing if the package is not installed. Ifa version of this package is installed, but
is not the version provided in this version of pkgsrc, then a warning message is displayed. This
target can be used to show which of your installed packages are downlevel, and so the old versions
can be deleted, and the current ones added.

show-pkgsrc-dir

This target shows the directory in the pkgsrc hierarchy fromwhich the package can be built and
installed. This may not be the same directory as the one from which the package was installed. This
target is intended to be used by people who may wish to upgrademany packages on a single host,
and can be invoked from the top-level pkgsrc Makefile by usingthe “show-host-specific-pkgs”
target.

show-installed-depends

This target shows which installed packages match the current package’sDEPENDS. Useful if out of
date dependencies are causing build problems.

check-shlibs

After a package is installed, check all its binaries and (on ELF platforms) shared libraries to see if
they find the shared libs they need. Run by default ifPKG_DEVELOPERis set in/etc/mk.conf .

print-PLIST

After a “make install” from a new or upgraded pkg, this printsout an attempt to generate a new
PLIST from afind -newer work/.extract_done. An attempt is made to care for shared libs etc., but
it is stronglyrecommended to review the result before putting it intoPLIST . On upgrades, it’s
useful to diff the output of this command against an already existingPLIST file.

If the package installs files via tar(1) or other methods thatdon’t update file access times, be sure to
add these files manually to yourPLIST , as the “find -newer” command used by this target won’t
catch them!

SeeSection 10.3for more information on this target.

bulk-package

Used to do bulk builds. If an appropriate binary package already exists, no action is taken. If not,
this target will compile, install and package it (and its depends, ifPKG_DEPENDSis set properly. See
Section 6.3.1). After creating the binary package, the sources, the just-installed package and its
required packages are removed, preserving free disk space.

Beware that this target may deinstall all packages installed on a system!

bulk-install

Used during bulk-installs to install required packages. Ifan up-to-date binary package is available,
it will be installed via pkg_add(1). If not,make bulk-packagewill be executed, but the installed

74

Chapter 14. The build process

binary won’t be removed.

A binary package is considered “up-to-date” to be installedvia pkg_add(1) if:

• None of the package’s files (Makefile , ...) were modified since it was built.

• None of the package’s required (binary) packages were modified since it was built.

Beware that this target may deinstall all packages installed on a system!

75

Chapter 15.

Tools needed for building or
running

TheUSE_TOOLSdefinition is used both internally by pkgsrc and also for individual packages to define
what commands are needed for building a package (likeBUILD_DEPENDS) or for later run-time of an
installed packaged (such asDEPENDS). If the native system provides an adequate tool, then in many
cases, a pkgsrc package will not be used.

When building a package, the replacement tools are made available in a directory (as symlinks or
wrapper scripts) that is early in the executable search path. Just like the buildlink system, this helps with
consistent builds.

A tool may be needed to help build a specific package. For example, perl, GNU make (gmake) or yacc
may be needed.

Also a tool may be needed, for example, because the native system’s supplied tool may be inefficient for
building a package with pkgsrc. For example, a package may need GNU awk, bison (instead of yacc) or
a better sed.

The tools used by a package can be listed by runningmake show-tools.

15.1. Tools for pkgsrc builds
The default set of tools used by pkgsrc is defined inbsd.pkg.mk . This includes standard Unix tools,
such as:cat, awk, chmod, test, and so on. These can be seen by running:make show-var
VARNAME=USE_TOOLS .

If a package needs a specific program to build then theUSE_TOOLSvariable can be used to define the
tools needed.

15.2. Tools needed by packages
In the following examples, the :pkgsrc means to use the pkgsrc version and not the native version for a
build dependency. And the :run means that it is used for a run-time dependencies also (and becomes a
DEPENDS). The default is a build dependency which can be set with :build. (So in this example, it is the
same as gmake:build and pkg-config:build.)

USE_TOOLS+= mktemp:pkgsrc
USE_TOOLS+= gmake perl:run pkg-config

When using the tools framework, aTOOLS_PATH.foo variable is defined which contains the full path to
the appropriate tool. For example,TOOLS_PATH.bash could be “/bin/bash” on Linux systems.

76

Chapter 15. Tools needed for building or running

If you always need a pkgsrc version of the tool at run-time, then just useDEPENDSinstead.

15.3. Tools provided by platforms
When improving or porting pkgsrc to a new platform, have a look at (or create) the corresponding
platform specific make file fragment underpkgsrc/mk/tools/tools.${OPSYS}.mk which defines
the name of the common tools. For example:

.if exists(/usr/bin/bzcat)
TOOLS_PLATFORM.bzcat?= /usr/bin/bzcat
.elif exists(/usr/bin/bzip2)
TOOLS_PLATFORM.bzcat?= /usr/bin/bzip2 -cd
.endif

TOOLS_PLATFORM.true?= true # shell builtin

77

Chapter 16.

Making your package work

16.1. General operation

16.1.1. How to pull in variables from /etc/mk.conf

The problem with package-defined variables that can be overridden viaMAKECONFor /etc/mk.conf is
that make(1) expands a variable as it is used, but evaluates preprocessor-like statements (.if, .ifdef and
.ifndef) as they are read. So, to use any variable (which may be set in/etc/mk.conf) in one of the .if*
statements, the file/etc/mk.conf must be included before that .if* statement.

Rather than having a number of ad-hoc ways of including/etc/mk.conf , should it exist, orMAKECONF,
should it exist, include thepkgsrc/mk/bsd.prefs.mk file in the package Makefile before any
preprocessor-like .if, .ifdef, or .ifndef statements:

.include "../../mk/bsd.prefs.mk"

.if defined(USE_MENUS)
...
.endif

If you wish to set theCFLAGSvariable in/etc/mk.conf , please make sure to use:

CFLAGS+= -your -flags

UsingCFLAGS=(i.e. without the “+”) may lead to problems with packages that need to add their own
flags. Also, you may want to take a look at thedevel/cpuflags package if you’re interested in
optimization for the current CPU.

16.1.2. Where to install documentation

Documentation should be installed into${PREFIX}/share/doc/${PKGBASE} or
${PREFIX}/share/doc/${PKGNAME} (the latter includes the version number of the package).

16.1.3. Restricted packages

Some licenses restrict how software may be re-distributed.In order to satisfy these restrictions, the
package system defines five make variables that can be set to note these restrictions:

• RESTRICTED

78

Chapter 16. Making your package work

This variable should be set whenever a restriction exists (regardless of its kind). Set this variable to a
string containing the reason for the restriction.

• NO_BIN_ON_CDROM

Binaries may not be placed on CD-ROM. Set this variable to${RESTRICTED} whenever a binary
package may not be included on a CD-ROM.

• NO_BIN_ON_FTP

Binaries may not be placed on an FTP server. Set this variableto ${RESTRICTED} whenever a binary
package may not not be made available on the Internet.

• NO_SRC_ON_CDROM

Distfiles may not be placed on CD-ROM. Set this variable to${RESTRICTED} if re-distribution of the
source code or other distfile(s) is not allowed on CD-ROMs.

• NO_SRC_ON_FTP

Distfiles may not be placed on FTP. Set this variable to${RESTRICTED} if re-distribution of the
source code or other distfile(s) via the Internet is not allowed.

Please note that the use ofNO_PACKAGE, IGNORE, NO_CDROM, or other generic make variables to denote
restrictions is deprecated, because they unconditionallyprevent users from generating binary packages!

16.1.4. Handling dependencies

Your package may depend on some other package being present -and there are various ways of
expressing this dependency. pkgsrc supports theBUILD_DEPENDSandDEPENDSdefinitions, the
USE_TOOLSdefinition, as well as dependencies viabuildlink3.mk , which is the preferred way to
handle dependencies, and which uses the variables named above. SeeChapter 11for more information.

The basic difference between the two variables is as follows: TheDEPENDSdefinition registers that
pre-requisite in the binary package so it will be pulled in when the binary package is later installed,
whilst theBUILD_DEPENDSdefinition does not, marking a dependency that is only neededfor building
the package.

This means that if you only need a package present whilst you are building, it should be noted as a
BUILD_DEPENDS.

The format for aBUILD_DEPENDSand aDEPENDSdefinition is:

<pre-req-package-name>:../../<category>/<pre-req-pa ckage>

Please note that the “pre-req-package-name” may include any of the wildcard version numbers
recognized by pkg_info(1).

1. If your package needs another package’s binaries or libraries to build or run, and if that package has
abuildlink3.mk file available, use it:

.include "../../graphics/jpeg/buildlink3.mk"

2. If your package needs to use another package to build itself and there is nobuildlink3.mk file
available, use theBUILD_DEPENDSdefinition:

BUILD_DEPENDS+= autoconf-2.13:../../devel/autoconf

79

Chapter 16. Making your package work

3. If your package needs a library with which to link and againthere is nobuildlink3.mk file
available, this is specified using theDEPENDSdefinition. An example of this is theprint/lyx

package, which uses the xpm library, version 3.4j to build:

DEPENDS+= xpm-3.4j:../../graphics/xpm

You can also use wildcards in package dependences:

DEPENDS+= xpm-[0-9] * :../../graphics/xpm

Note that such wildcard dependencies are retained when creating binary packages. The dependency
is checked when installing the binary package and any package which matches the pattern will be
used. Wildcard dependencies should be used with care.

The “-[0-9]*” should be used instead of “-*” to avoid potentially ambiguous matches such as
“tk-postgresql” matching a “tk-*”DEPENDS.

Wildcards can also be used to specify that a package will onlybuild against a certain minimum
version of a pre-requisite:

DEPENDS+= tiff>=3.5.4:../../graphics/tiff

This means that the package will build against version 3.5.4of the tiff library or newer. Such a
dependency may be warranted if, for example, the API of the library has changed with version 3.5.4
and a package would not compile against an earlier version oftiff.

Please note that such dependencies should only be updated ifa package requires a newer
pre-requisite, but not to denote recommendations such as security updates or ABI changes that do
not prevent a package from building correctly. Such recommendations can be expressed using
RECOMMENDED:

RECOMMENDED+= tiff>=3.6.1:../../graphics/tiff

In addition to the aboveDEPENDSline, this denotes that while a package will build against
tiff>=3.5.4, at least version 3.6.1 is recommended.RECOMMENDEDentries will be turned into
dependencies unless explicitly ignored (in which case a warning will be printed).

To ignore these dependency recommendations and just use therequiredDEPENDS, set
IGNORE_RECOMMENDED=YES. This may make it easier and faster to update packages built using
pkgsrc, since older compatible dependencies can continue to be used. This is useful for people who
watch their rebuilds very carefully; it is not very good as a general-purpose hammer. If you use it,
you need to be mindful of possible ABI changes, including those from the underlying OS.

Packages that are built with recommendations ignored may not be uploaded to ftp.NetBSD.org by
developers and should not be used across different systems that may have different versions of
binary packages installed.

For security fixes, please update the package vulnerabilities file as well as settingRECOMMENDED,
seeSection 16.1.8for more information.

4. If your package needs some executable to be able to run correctly and if there’s nobuildlink3.mk

file, this is specified using theDEPENDSvariable. Theprint/lyx package needs to be able to
execute the latex binary from the teTeX package when it runs,and that is specified:

DEPENDS+= teTeX-[0-9] * :../../print/teTeX

The comment about wildcard dependencies from previous paragraph applies here, too.

80

Chapter 16. Making your package work

If your package needs files from another package to build, seethe first part of the “do-configure” target
print/ghostscript5 package (it relies on the jpeg sources being present in source form during the
build):

if [! -e ${_PKGSRCDIR}/graphics/jpeg/${WRKDIR:T}/jpeg- 6b]; then \
cd ${_PKGSRCDIR}/../../graphics/jpeg && ${MAKE} extract ; \

fi

If you build any other packages that way, please make sure theworking files are deleted too when this
package’s working files are cleaned up. The easiest way to do so is by adding a pre-clean target:

pre-clean:
cd ${_PKGSRCDIR}/../../graphics/jpeg && ${MAKE} clean

Please also note theBUILD_USES_MSGFMTandBUILD_USES_GETTEXT_M4definitions, which are
provided as convenience definitions. The former works out whether msgfmt(1) is part of the base system,
and, if it isn’t, installs thedevel/gettext package. The latter adds a build dependency on either an
installed version of an older gettext package, or if it isn’t, installs thedevel/gettext-m4 package.

16.1.5. Handling conflicts with other packages

Your package may conflict with other packages a user might already have installed on his system, e.g. if
your package installs the same set of files like another package in our pkgsrc tree.

In this case you can setCONFLICTSto a space-separated list of packages (including version string) your
package conflicts with.

For example,x11/Xaw3d andx11/Xaw-Xpm install the same shared library, thus you set in
pkgsrc/x11/Xaw3d/Makefile :

CONFLICTS= Xaw-Xpm-[0-9] *

and inpkgsrc/x11/Xaw-Xpm/Makefile :

CONFLICTS= Xaw3d-[0-9] *

Packages will automatically conflict with other packages with the name prefix and a different version
string. “Xaw3d-1.5” e.g. will automatically conflict with the older version “Xaw3d-1.3”.

16.1.6. Packages that cannot or should not be built

There are several reasons why a package might be instructed to not build under certain circumstances. If
the package builds and runs on most platforms, the exceptions should be noted with
NOT_FOR_PLATFORM. If the package builds and runs on a small handful of platforms, set
ONLY_FOR_PLATFORMinstead. BothONLY_FOR_PLATFORMandNOT_FOR_PLATFORMare OS triples
(OS-version-platform) that can use glob-style wildcards.

If the package should be skipped (for example, because it provides functionality already provided by the
system), setPKG_SKIP_REASONto a descriptive message. If the package should fail becausesome
preconditions are not met, setPKG_FAIL_REASONto a descriptive message.

81

Chapter 16. Making your package work

16.1.7. Packages which should not be deleted, once installe d

To ensure that a package may not be deleted, once it has been installed, thePKG_PRESERVEdefinition
should be set in the package Makefile. This will be carried into any binary package that is made from this
pkgsrc entry. A “preserved” package will not be deleted using pkg_delete(1) unless the “-f” option is
used.

16.1.8. Handling packages with security problems

When a vulnerability is found, this should be noted in
localsrc/security/advisories/pkg-vulnerabilities , and after committing that file, use
make upload in the same directory to update the file on ftp.NetBSD.org.

After fixing the vulnerability by a patch, itsPKGREVISIONshould be increased (this is of course not
necessary if the problem is fixed by using a newer release of the software). In addition, if a
buildlink3.mk file exists for an affected package, a correspondingBUILDLINK_RECOMMENDED.pkg

entry should be added or updated in it.

Also, if the fix should be applied to the stable pkgsrc branch,be sure to submit a pullup request!

Binary packages already on ftp.NetBSD.org will be handled semi-automatically by a weekly cron job.

16.1.9. How to handle compiler bugs

Some source files trigger bugs in the compiler, based on combinations of compiler version and
architecture and almost always relation to optimisation being enabled. Common symptoms are gcc
internal errors or never finishing compiling a file.

Typically, a workaround involves testing theMACHINE_ARCHand compiler version, disabling
optimisation for that file/MACHINE_ARCH/compiler combination, and documenting it in
pkgsrc/doc/HACKS . See that file for a number of examples!

16.1.10. How to handle incrementing versions when fixing an e xisting
package

When making fixes to an existing package it can be useful to change the version number inPKGNAME. To
avoid conflicting with future versions by the original author, a “nb1”, “nb2”, ... suffix can be used on
package versions by settingPKGREVISION=1(2, ...). The “nb” is treated like a “.” by the pkg tools. e.g.

DISTNAME= foo-17.42
PKGREVISION= 9

will result in aPKGNAMEof “foo-17.42nb9”.

When a new release of the package is released, thePKGREVISIONshould be removed, e.g. on a new
minor release of the above package, things should be like:

DISTNAME= foo-17.43

82

Chapter 16. Making your package work

16.1.11. Portability of packages

One appealing feature of pkgsrc is that it runs on many different platforms. As a result, it is important to
ensure, where possible, that packages in pkgsrc are portable. There are some particular details you
should pay attention to while working on pkgsrc.

16.1.11.1. ${INSTALL}, ${INSTALL_DATA_DIR}, ...

The BSD-compatibleinstall supplied with some operating systems will not perform more than one
operation at a time. As such, you should call “${INSTALL}”, etc. like this:

${INSTALL_DATA_DIR} ${PREFIX}/dir1
${INSTALL_DATA_DIR} ${PREFIX}/dir2

16.2. Possible downloading issues

16.2.1. Packages whose distfiles aren’t available for plain downloading

If you need to download from a dynamic URL you can setDYNAMIC_MASTER_SITESand amake fetch
will call files/getsite.sh with the name of each file to download as an argument, expecting it to
output the URL of the directory from which to download it.graphics/ns-cult3d is an example of
this usage.

If the download can’t be automated, because the user must submit personal information to apply for a
password, or must pay for the source, or whatever, you can set_FETCH_MESSAGEto a macro which
displays a message explaining the situation._FETCH_MESSAGEmust be executable shell commands, not
just a message. (Generally, it executes${ECHO}). As of this writing, the following packages use this:
cad/simian , devel/ipv6socket , emulators/vmware-module , fonts/acroread-jpnfont ,
multimedia/realplayer , sysutils/storage-manager , www/ap-aolserver , www/openacs .
Try to be consistent with them.

16.2.2. How to handle modified distfiles with the ’old’ name

Sometimes authors of a software package make some modifications after the software was released, and
they put up a new distfile without changing the package’s version number. If a package is already in
pkgsrc at that time, the checksum will no longer match. The contents of the new distfile should be
compared against the old one before changing anything, to make sure the distfile was really updated on
purpose, and that no trojan horse or so crept in. Then, the correct way to work around this is to set
DIST_SUBDIR to a unique directory name, usually based onPKGNAME_NOREV. In case this happens
more often,PKGNAMEcan be used (thus including thenbX suffix) or a date stamp can be appended, like
${PKGNAME_NOREV}-YYYYMMDD. Do not forget regenerating thedistinfo file after that, since it
contains theDIST_SUBDIR path in the filenames. Furthermore, a mail to the package’s authors seems
appropriate telling them that changing distfiles after releases without changing the file names is not good
practice.

83

Chapter 16. Making your package work

16.3. Configuration gotchas

16.3.1. Shared libraries - libtool

pkgsrc supports many different machines, with different object formats like a.out and ELF, and varying
abilities to do shared library and dynamic loading at all. Toaccompany this, varying commands and
options have to be passed to the compiler, linker, etc. to getthe Right Thing, which can be pretty
annoying especially if you don’t have all the machines at your hand to test things. Thedevel/libtool

pkg can help here, as it just “knows” how to build both static and dynamic libraries from a set of source
files, thus being platform-independent.

Here’s how to use libtool in a pkg in seven simple steps:

1. AddUSE_LIBTOOL=yes to the package Makefile.

2. For library objects, use “${LIBTOOL} --mode=compile ${CC}” in place of “${CC}”. You could
even add it to the definition ofCC, if only libraries are being built in a given Makefile. This one
command will build both PIC and non-PIC library objects, so you need not have separate shared and
non-shared library rules.

3. For the linking of the library, remove any “ar”, “ranlib”,and “ld -Bshareable” commands, and
instead use:

${LIBTOOL} --mode=link ${CC} -o ${.TARGET:.a=.la} ${OBJS :.o=.lo} \
-rpath ${PREFIX}/lib -version-info major:minor

Note that the library is changed to have a.la extension, and the objects are changed to have a.lo

extension. ChangeOBJSas necessary. This automatically creates all of the.a , .so.major.minor ,
and ELF symlinks (if necessary) in the build directory. Be sure to include “-version-info”, especially
when major and minor are zero, as libtool will otherwise strip off the shared library version.

From the libtool manual:

So, libtool library versions are described by three integer s:

CURRENT
The most recent interface number that this library implemen ts.

REVISION
The implementation number of the CURRENT interface.

AGE
The difference between the newest and oldest interfaces tha t

this library implements. In other words, the library implem ents
all the interface numbers in the range from number ‘CURRENT -
AGE’ to ‘CURRENT’.

If two libraries have identical CURRENT and AGE numbers, the n the
dynamic linker chooses the library with the greater REVISIO N number.

The “-release” option will produce different results for a.out and ELF (excluding symlinks) in only
one case. An ELF library of the form “libfoo-release.so.x.y” will have a symlink of “libfoo.so.x.y”
on an a.out platform. This is handled automatically.

The “-rpath argument” is the install directory of the library being built.

84

Chapter 16. Making your package work

In thePLIST , include only the.la file, the other files will be added automatically.

4. When linking shared object (.so) files, i.e. files that are loaded via dlopen(3), NOT shared libraries,
use “-module -avoid-version” to prevent them getting version tacked on.

ThePLIST file gets thefoo.so entry.

5. When linking programs that depend on these librariesbeforethey are installed, preface the cc(1) or
ld(1) line with “${LIBTOOL} --mode=link”, and it will find the correct libraries (static or shared),
but please be aware that libtool will not allow you to specifya relative path in -L (such as
“-L../somelib”), because it expects you to change that argument to be the.la file. e.g.

${LIBTOOL} --mode=link ${CC} -o someprog -L../somelib -ls omelib

should be changed to:

${LIBTOOL} --mode=link ${CC} -o someprog ../somelib/somelib.la

and it will do the right thing with the libraries.

6. When installing libraries, preface the install(1) or cp(1) command with “${LIBTOOL}
--mode=install”, and change the library name to.la . e.g.

${LIBTOOL} --mode=install ${BSD_INSTALL_DATA} ${SOMELI B:.a=.la} ${PREFIX}/lib

This will install the static.a , shared library, any needed symlinks, and run ldconfig(8).

7. In yourPLIST , include only the.la file (this is a change from previous behaviour).

16.3.2. Using libtool on GNU packages that already support l ibtool

Add USE_LIBTOOL=yes to the package Makefile. This will override the package’s ownlibtool in most
cases. For older libtool using packages, libtool is made by ltconfig script during the do-configure step;
you can check the libtool script location by doingmake configure; find work*/ -name libtool.

LIBTOOL_OVERRIDEspecifies which libtool scripts, relative toWRKSRC, to override. By default, it is set
to “libtool */libtool */*/libtool”. If this does not match the location of the package’s libtool script(s), set
it as appropriate.

If you do not need* .a static libraries built and installed, then useSHLIBTOOL_OVERRIDEinstead.

If your package makes use of the platform-independent library for loading dynamic shared objects, that
comes with libtool (libltdl), you should include devel/libltdl/buildlink3.mk.

Some packages use libtool incorrectly so that the package may not work or build in some circumstances.
Some of the more common errors are:

• The inclusion of a shared object (-module) as a dependent library in an executable or library. This in
itself isn’t a problem if one of two things has been done:

1. The shared object is named correctly, i.e.libfoo.la , not foo.la

2. The -dlopen option is used when linking an executable.

• The use of libltdl without the correct calls to initialisation routines. The function lt_dlinit() should be
called and the macroLTDL_SET_PRELOADED_SYMBOLSincluded in executables.

85

Chapter 16. Making your package work

16.3.3. GNU Autoconf/Automake

If a package needs GNU autoconf or automake to be executed to regenerate the configure script and
Makefile.in makefile templates, then they should be executedin a pre-configure target.

For packages that need only autoconf:

AUTOCONF_REQD= 2.50 # if default version is not good enough
USE_TOOLS+= autoconf # use "autoconf213" for autoconf-2.1 3
...

pre-configure:
cd ${WRKSRC}; autoconf

...

and for packages that need automake and autoconf:

AUTOMAKE_REQD= 1.7.1 # if default version is not good enough
USE_TOOLS+= automake # use "automake14" for automake-1.4
...

pre-configure:
cd ${WRKSRC}; \
aclocal; autoheader; \
automake -a --foreign -i; autoconf

...

Packages which use GNU Automake will almost certainly require GNU Make.

There are times when the configure process makes additional changes to the generated files, which then
causes the build process to try to re-execute the automake sequence. This is prevented by touching
various files in the configure stage. If this causes problems with your package you can set
AUTOMAKE_OVERRIDE=NOin the package Makefile.

16.4. Building the package

16.4.1. CPP defines

Sometimes you need to compile different code depending on the target platform. The C preprocessor has
a set of predefined macros that can be queried by using#ifdef FOO or #if defined(FOO) . Among
these macros are usually ones that describe the target CPU and operating system. Depending of which of
the macros are defined, you can write code that uses features unique to a specific platform. Generally you
should rather use the GNU autotools (automake, autoconf, etc.) to check for specific features (like the
existence of a header file, a function or a library), but sometimes this is not possible or desired.

In that case you can use the predefined macros below to configure your code to the platform it runs on.
Almost every operating system, hardware architecture and compiler has its own macro. For example, if
the macros__GNUC__, __i386__ and__NetBSD__ are all defined, you know that you are using
NetBSD on an i386 compatible CPU, and your compiler is GCC.

86

Chapter 16. Making your package work

16.4.1.1. CPP defines for operating systems

To distinguish between 4.4 BSD-derived systems and the restof the world, you should use the following
code.

#include <sys/param.h>
#if (defined(BSD) && BSD >= 199306)

/ * BSD-specific code goes here * /
#else

/ * non-BSD-specific code goes here * /
#endif

If this distinction is not fine enough, you can also use the following defines.

FreeBSD __FreeBSD__
DragonFly __DragonFly__
Interix __INTERIX
Linux linux, __linux, __linux__
NetBSD __NetBSD__
OpenBSD __OpenBSD__
Solaris sun, __sun

16.4.1.2. CPP defines for CPUs

i386 i386, __i386, __i386__
MIPS __mips
SPARC sparc, __sparc

16.4.1.3. CPP defines for compilers

GCC __GNUC__ (major version), __GNUC_MINOR__
SunPro __SUNPRO_C (0x570 for version 5.7)

16.4.2. Examples of CPP defines for some platforms

The list of the CPP identification macros for hardware and operating system may depend on the compiler
that is used. The following list contains some examples thatmay help you to choose the right ones. For
example, if you want to conditionally compile code on Solaris, don’t use__sun__ , as the SunPro
compiler does not define it. Use__sun instead.

GCC 3.3.3 + SuSE Linux 9.1 + i386

__ELF__, __gnu_linux__, __i386, __i386__, __linux, __linux__, __unix, __unix__, i386, linux,
unix.

GCC 2.95 + NetBSD 1.6.2 + i386

__ELF__, __NetBSD__, __i386, __i386__, i386.

87

Chapter 16. Making your package work

GCC 3.3.3 + NetBSD 2.0 + i386

__ELF__, __NetBSD__, __i386, __i386__, i386.

GCC 4 + Solaris 8 + SPARC

__ELF__, __sparc, __sparc__, __sun, __sun__, __SVR4, __svr4__, __unix, __unix__, sparc, sun,
unix.

SunPro 5.7 + Solaris 8 + SPARC

__SVR4, __sparc, __sun, __unix, sparc, sun, unix.

16.4.3. Getting a list of CPP defines

If your system uses the GNU C Compiler, you can get a list of symbols that are defined by default, e.g. to
identify the platform, with the following command:

gcc -E -dM - < /dev/null

On other systems you may get the list by using the system’s syscall trace utility (ktrace, truss, strace) to
have a look which arguments are passed to the actual compiler.

16.5. Package specific actions

16.5.1. User interaction

Occasionally, packages require interaction from the user,and this can be in a number of ways:

• help in fetching the distfiles

• help to configure the package before it is built

• help during the build process

• help during the installation of a package

TheINTERACTIVE_STAGEdefinition is provided to notify the pkgsrc mechanism of an interactive stage
which will be needed, and this should be set in the package’sMakefile , e.g.:

INTERACTIVE_STAGE= build

Multiple interactive stages can be specified:

INTERACTIVE_STAGE= configure install

16.5.2. Handling licenses

A package may be covered by a license which the user has or has not agreed to accept. For these cases,
pkgsrc contains a mechanism to note that a package is coveredby a particular license, and the package

88

Chapter 16. Making your package work

cannot be built unless the user has accepted the license. (Installation of binary packages are not currently
subject to this mechanism.) Packages with licenses that areeither Open Source according to the Open
Source Initiative or Free according to the Free Software Foundation will not be marked with a license
tag. Packages with licenses that have not been determined tomeet either definition will be marked with a
license tag referring to the license. This will prevent building unless pkgsrc is informed that the license is
acceptable, and enables displaying the license.

The license tag mechanism is intended to address copyright-related issues surrounding building,
installing and using a package, and not to address redistribution issues (seeRESTRICTEDand
NO_SRC_ON_FTP, etc.). However, the above definition of licenses for which tags are not needed implies
that packages with redistribution restrictions should have tags.

Denoting that a package is covered by a particular license isdone by placing the license in
pkgsrc/licenses and setting theLICENSE variable to a string identifying the license, e.g. in
graphics/xv :

LICENSE= xv-license

When trying to build, the user will get a notice that the package is covered by a license which has not
been accepted:

% make

===> xv-3.10anb9 has an unacceptable license: xv-license.
===> To view the license, enter "/usr/bin/make show-licens e".
===> To indicate acceptance, add this line to your /etc/mk.c onf:
===> ACCEPTABLE_LICENSES+=xv-license

*** Error code 1

The license can be viewed withmake show-license, and if it is considered appropriate, the line printed
above can be added to/etc/mk.conf to indicate acceptance of the particular license:

ACCEPTABLE_LICENSES+=xv-license

When adding a package with a new license, the license text should be added topkgsrc/licenses for
displaying. A list of known licenses can be seen in this directory as well as by looking at the list of
(commented out)ACCEPTABLE_LICENSESvariable settings inpkgsrc/mk/defaults/mk.conf .

The use ofLICENSE=shareware , LICENSE=no-commercial-use , and similar language is deprecated
because it does not crisply refer to a particular license text. Another problem with such usage is that it
does not enable a user to denote acceptance of the license fora single package without accepting the
same license text for another package. In particular, this can be inappropriate when e.g. one accepts a
particular license to indicate to pkgsrc that a fee has been paid.

16.5.3. Installing score files

Certain packages, most of them in the games category, install a score file that allows all users on the
system to record their highscores. In order for this to work,the binaries need to be installed setgid and
the score files owned by the appropriate group and/or owner (traditionally the "games" user/group). The
following variables, documented in more detail inmk/defaults/mk.conf , control this behaviour:
SETGIDGAME, GAMEDATAMODE, GAMEGRP, GAMEMODE, GAMEOWN.

89

Chapter 16. Making your package work

Note that per default, setgid installation of games is disabled; settingSETGIDGAME=YESwill set all the
other variables accordingly.

A package should therefor never hard code file ownership or access permissions but rely on
INSTALL_GAMEandINSTALL_GAME_DATAto set these correctly.

16.5.4. Packages containing perl scripts

If your package contains interpreted perl scripts, setREPLACE_PERLto ensure that the proper interpreter
path is set.REPLACE_PERLshould contain a list of scripts, relative toWRKSRC, that you want adjusted.

16.5.5. Packages with hardcoded paths to other interpreter s

Your package may also contain scripts with hardcoded paths to other interpreters besides (or as well as)
perl. To correct the full pathname to the script interpreter, you need to set the following definitions in
yourMakefile (we shall usetclsh in this example):

REPLACE_INTERPRETER+= tcl
_REPLACE.tcl.old= . * /bin/tclsh
_REPLACE.tcl.new= ${PREFIX}/bin/tclsh
_REPLACE_FILES.tcl= # list of tcl scripts which need to be fi xed,

relative to ${WRKSRC}, just as in REPLACE_PERL

16.5.6. Packages installing perl modules

Makefiles of packages providing perl5 modules should include the Makefile fragment
../../lang/perl5/module.mk . It provides ado-configuretarget for the standard perl configuration
for such modules as well as various hooks to tune this configuration. See comments in this file for details.

Perl5 modules will install into different places dependingon the version of perl used during the build
process. To address this, pkgsrc will append lines to thePLIST corresponding to the files listed in the
installed.packlist file generated by most perl5 modules. This is invoked by defining
PERL5_PACKLIST to a space-separated list of paths to packlist files, e.g.:

PERL5_PACKLIST= ${PERL5_SITEARCH}/auto/Pg/.packlist

The variablesPERL5_SITELIB , PERL5_SITEARCH, andPERL5_ARCHLIBrepresent the three locations
in which perl5 modules may be installed, and may be used by perl5 packages that don’t have a packlist.
These three variables are also substituted for in thePLIST .

16.5.7. Packages installing info files

Some packages install info files or use the “makeinfo” or “install-info” commands. Each of the info files:

• is considered to be installed in the directory${PREFIX}/${INFO_DIR} ,

• is registered in the Info directory file${PREFIX}/${INFO_DIR}/dir ,

• and must be listed as a filename in theINFO_FILES variable in the package Makefile.

90

Chapter 16. Making your package work

INFO_DIR defaults to “info” and can be overridden in the package Makefile. INSTALL andDEINSTALL

scripts will be generated to handle registration of the infofiles in the Info directory file. The
“install-info” command used for the info files registrationis either provided by the system, or by a
special purpose package automatically added as dependencyif needed.

A package which needs the “makeinfo” command at build time must define the variableUSE_MAKEINFO

in its Makefile. If a minimum version of the “makeinfo” command is needed it should be noted with the
TEXINFO_REQDvariable in the packageMakefile . By default, a minimum version of 3.12 is required.
If the system does not provide amakeinfo command or if it does not match the required minimum, a
build dependency on thedevel/gtexinfo package will be added automatically.

The build and installation process of the software providedby the package should not use theinstall-info
command as the registration of info files is the task of the packageINSTALL script, and it must use the
appropriatemakeinfo command.

To achieve this goal, the pkgsrc infrastructure creates overriding scripts for theinstall-info andmakeinfo
commands in a directory listed early inPATH.

The script overridinginstall-info has no effect except the logging of a message. The script overriding
makeinfo logs a message and according to the value ofUSE_MAKEINFOandTEXINFO_REQDeither run
the appropriatemakeinfo command or exit on error.

16.5.8. Packages installing man pages

Many packages install manual pages. The man pages are installed under${PREFIX}/${PKGMANDIR}

which is /usr/pkg/man by default.PKGMANDIRdefaults to “man”. For example, you can set
PKGMANDIRto “share/man” to have man pages install under/usr/pkg/share/man/ by default.

Note: The support for a custom PKGMANDIRis not complete.

ThePLIST files can just useman/ as the top level directory for the man page file entries and thepkgsrc
framework will convert as needed.

Packages that are configured withGNU_CONFIGUREset as “yes”, by default will use the./configure

--mandir switch to set where the man pages should be installed. The path isGNU_CONFIGURE_MANDIR

which defaults to${PREFIX}/${PKGMANDIR} .

Packages that useGNU_CONFIGUREbut do not use --mandir, can setCONFIGURE_HAS_MANDIRto “no”.
Or if the ./configure script uses a non-standard use of --mandir, you can set
GNU_CONFIGURE_MANDIRas needed.

SeeSection 10.5for information on installation of compressed manual pages.

16.5.9. Packages installing GConf2 data files

If a package installs.schemas or .entries files, used by GConf2, you need to take some extra steps to
make sure they get registered in the database:

1. Include../../devel/GConf2/schemas.mk instead of itsbuildlink3.mk file. This takes care
of rebuilding the GConf2 database at installation and deinstallation time, and tells the package

91

Chapter 16. Making your package work

where to install GConf2 data files using some standard configure arguments. It also disallows any
access to the database directly from the package.

2. Ensure that the package installs its.schemas files under${PREFIX}/share/gconf/schemas . If
they get installed under${PREFIX}/etc , you will need to manually patch the package.

3. Check the PLIST and remove any entries under the etc/gconfdirectory, as they will be handled
automatically. SeeSection 7.14for more information.

4. Define theGCONF2_SCHEMASvariable in yourMakefile with a list of all .schemas files installed
by the package, if any. Names must not contain any directories in them.

5. Define theGCONF2_ENTRIESvariable in yourMakefile with a list of all .entries files installed
by the package, if any. Names must not contain any directories in them.

16.5.10. Packages installing scrollkeeper data files

If a package installs.omf files, used by scrollkeeper, you need to take some extra stepsto make sure they
get registered in the database:

1. Include../../textproc/scrollkeeper/omf.mk instead of itsbuildlink3.mk file. This
takes care of rebuilding the scrollkeeper database at installation and deinstallation time, and
disallows any access to it directly from the package.

2. Check the PLIST and remove any entries under thelibdata/scrollkeeper directory, as they
will be handled automatically.

3. Remove theshare/omf directory from the PLIST. It will be handled by scrollkeeper.

16.5.11. Packages installing X11 fonts

If a package installs font files, you will need to rebuild the fonts database in the directory where they get
installed at installation and deinstallation time. This can be automatically done by using the pkginstall
framework.

You can list the directories where fonts are installed in theFONTS_DIRS.type variables, wheretype
can be one of “ttf”, “type1” or “x11”. Also make sure that the database filefonts.dir is not listed in
the PLIST.

Note that you should not create new directories for fonts; instead use the standard ones to avoid that the
user needs to manually configure his X server to find them.

16.5.12. Packages installing GTK2 modules

If a package installs GTK2 immodules or loaders, you need to take some extra steps to get them
registered in the GTK2 database properly:

1. Include../../x11/gtk2/modules.mk instead of itsbuildlink3.mk file. This takes care of
rebuilding the database at installation and deinstallation time.

2. SetGTK2_IMMODULES=YESif your package installs GTK2 immodules.

92

Chapter 16. Making your package work

3. SetGTK2_LOADERS=YESif your package installs GTK2 loaders.

4. Patch the package to not touch any of the GTK2 databases directly. These are:

• libdata/gtk-2.0/gdk-pixbuf.loaders

• libdata/gtk-2.0/gtk.immodules

5. Check the PLIST and remove any entries under thelibdata/gtk-2.0 directory, as they will be
handled automatically.

16.5.13. Packages installing SGML or XML data

If a package installs SGML or XML data files that need to be registered in system-wide catalogs (like
DTDs, sub-catalogs, etc.), you need to take some extra steps:

1. Include../../textproc/xmlcatmgr/catalogs.mk in yourMakefile , which takes care of
registering those files in system-wide catalogs at installation and deinstallation time.

2. SetSGML_CATALOGSto the full path of any SGML catalogs installed by the package.

3. SetXML_CATALOGSto the full path of any XML catalogs installed by the package.

4. SetSGML_ENTRIESto individual entries to be added to the SGML catalog. These come in groups of
three strings; see xmlcatmgr(1) for more information (specifically, arguments recognized by the
’add’ action). Note that you will normally not use this variable.

5. SetXML_ENTRIESto individual entries to be added to the XML catalog. These come in groups of
three strings; see xmlcatmgr(1) for more information (specifically, arguments recognized by the
’add’ action). Note that you will normally not use this variable.

16.5.14. Packages installing extensions to the MIME databa se

If a package provides extensions to the MIME database by installing .xml files inside
${PREFIX}/share/mime/packages , you need to take some extra steps to ensure that the databaseis
kept consistent with respect to these new files:

1. Include../../databases/shared-mime-info/mimedb.mk (avoid using thebuildlink3.mk

file from this same directory, which is reserved for inclusion from otherbuildlink3.mk files). It
takes care of rebuilding the MIME database at installation and deinstallation time, and disallows any
access to it directly from the package.

2. Check the PLIST and remove any entries under theshare/mime directory,exceptfor files saved
undershare/mime/packages . The former are handled automatically by the
update-mime-database program, but the latter are package-dependent and must be removed by the
package that installed them in the first place.

3. Remove anyshare/mime/ * directories from the PLIST. They will be handled by the
shared-mime-info package.

93

Chapter 16. Making your package work

16.5.15. Packages using intltool

If a package uses intltool during its build, include the../../textproc/intltool/buildlink3.mk

file, which forces it to use the intltool package provided by pkgsrc, instead of the one bundled with the
distribution file.

This tracks intltool’s build-time dependencies and uses the latest available version; this way, the package
benefits of any bug fixes that may have appeared since it was released.

16.5.16. Packages installing startup scripts

If a package contains a rc.d script, it won’t be copied into the startup directory by default, but you can
enable it, by adding the optionPKG_RCD_SCRIPTS=YESin /etc/mk.conf . This option will copy the
scripts into/etc/rc.d when a package is installed, and it will automatically remove the scripts when
the package is deinstalled.

16.5.17. Packages installing TeX modules

If a package installs TeX packages into the texmf tree, thels-R database of the tree needs to be updated.

Note: Except the main TeX packages such as teTeX-texmf, packages should install files into
PKG_LOCALTEXMFPREFIX, not PKG_TEXMFPREFIX.

1. Include../../print/teTeX/module.mk instead of../../mk/tex.buildlink3.mk . This
takes care of rebuilding thels-R database at installation and deinstallation time.

2. If your package installs files into a texmf tree other than the one atPKG_LOCALTEXMFPREFIX, set
TEXMFDIRSto the list of all texmf trees that need database update.

If your package also installs font map files that need to be registered usingupdmap, set
TEX_FONTMAPSto the list of all such font map files. Thenupdmap will be run automatically at
installation/deinstallation to enable/disable font map files for TeX output drivers.

3. Make sure that none ofls-R databases are included inPLIST , as they will be removed only by the
teTeX-bin package.

16.6. Feedback to the author
If you have found any bugs in the package you make available, if you had to do special steps to make it
run under NetBSD or if you enhanced the software in various other ways, be sure to report these changes
back to the original author of the program! With that kind of support, the next release of the program can
incorporate these fixes, and people not using the NetBSD packages system can win from your efforts.

Support the idea of free software!

94

Chapter 17.

Debugging

To check out all the gotchas when building a package, here arethe steps that I do in order to get a
package working. Please note this is basically the same as what was explained in the previous sections,
only with some debugging aids.

• Be sure to setPKG_DEVELOPER=1in /etc/mk.conf

• Install pkgtools/url2pkg , create a directory for a new package, change into it, then run url2pkg :

% mkdir /usr/pkgsrc/category/examplepkg

% cd /usr/pkgsrc/category/examplepkg

% url2pkg http://www.example.com/path/to/distfile.tar.gz

• Edit theMakefile as requested.

• Fill in the DESCRfile

• Runmake configure

• Add any dependencies glimpsed from documentation and the configure step to the package’s
Makefile .

• Make the package compile, doing multiple rounds of

% make

% pkgvi ${WRKSRC}/some/file/that/does/not/compile

% mkpatches

% patchdiff

% mv ${WRKDIR}/.newpatches/* patches

% make mps

% make clean

Doing as non-root user will ensure that no files are modified that shouldn’t be, especially during the
build phase.mkpatches, patchdiff andpkgvi are from thepkgtools/pkgdiff package.

• Look at theMakefile , fix if necessary; seeSection 8.1.

• Generate aPLIST :

make install

make print-PLIST >PLIST

make deinstall

make install

make deinstall

You usually need to beroot to do this. Look if there are any files left:

make print-PLIST

If this reveals any files that are missing inPLIST , add them.

• Now that thePLIST is OK, install the package again and make a binary package:

95

Chapter 17. Debugging

make reinstall

make package

• Delete the installed package:

pkg_delete blub

• Repeat the abovemake print-PLIST command, which shouldn’t find anything now:

make print-PLIST

• Reinstall the binary package:

pkgadd .../blub.tgz

• Play with it. Make sure everything works.

• Runpkglint from pkgtools/pkglint , and fix the problems it reports:

pkglint

• Submit (or commit, if you have cvs access); seeChapter 18.

96

Chapter 18.

Submitting and Committing

18.1. Submitting your packages
You have to separate between binary and “normal” (source) packages here:

• precompiled binary packages

Our policy is that we accept binaries only from pkgsrc developers to guarantee that the packages don’t
contain any trojan horses etc. This is not to annoy anyone butrather to protect our users! You’re still
free to put up your home-made binary packages and tell the world where to get them. NetBSD
developers doing bulk builds and wanting to upload them please seeSection 6.3.8.

• packages

First, check that your package is complete, compiles and runs well; seeChapter 17and the rest of this
document. Next, generate an uuencoded gzipped tar(1) archive, preferably with all files in a single
directory. Finally,send-prwith category “pkg”, a synopsis which includes the package name and
version number, a short description of your package (contents of the COMMENT variable or DESCR
file are OK) and attach the archive to your PR.

If you want to submit several packages, please send a separate PR for each one, it’s easier for us to
track things that way.

Alternatively, you can also import new packages into pkgsrc-wip (“pkgsrc work-in-progress”); see the
homepage at http://pkgsrc-wip.sourceforge.net/ for details.

18.2. General notes when adding, updating, or removing pack ages
Please note all package additions, updates, moves, and removals inpkgsrc/doc/CHANGES . It’s very
important to keep this file up to date and conforming to the existing format, because it will be used by
scripts to automatically update pages on www.NetBSD.org (http://www.NetBSD.org/) and other sites.
Additionally, check thepkgsrc/doc/TODO file and remove the entry for the package you updated or
removed, in case it was mentioned there.

There is a make target that helps in creating properCHANGESentries:make changes-entry. It uses the
optionalCTYPEandNETBSD_LOGIN_NAMEvariables. The general usage is to first make sure that your
CHANGESfile is up-to-date (to avoid having to resolve conflicts later-on) and then tocd to the package
directory. For package updates,make changes-entryis enough. For new packages, or package moves or
removals, set theCTYPEvariable on the command line to "Added", "Moved", or "Removed". You can set
NETBSD_LOGIN_NAMEin /etc/mk.conf if your local login name is not the same as your NetBSD login
name. Don’t forget to commit the changes topkgsrc/doc/CHANGES !

97

Chapter 18. Submitting and Committing

18.3. Committing: Importing a package into CVS
This section is only of interest for pkgsrc developers with write access to the pkgsrc repository. Please
remember that cvs imports files relative to the current working directory, and that the pathname that you
give thecvs import command is so that it knows where to place the files in the repository. Newly created
packages should be imported with a vendor tag of “TNF” and a release tag of “pkgsrc-base”, e.g:

$ cd .../pkgsrc/category/pkgname
$ cvs import pkgsrc/category/pkgname TNF pkgsrc-base

Remember to move the directory from which you imported out ofthe way, or cvs will complain the next
time you “cvs update” your source tree. Also don’t forget to add the new package to the category’s
Makefile .

The commit message of the initial import should include partof theDESCRfile, so people reading the
mailing lists know what the package is/does.

For new packages, “cvs import” is preferred to “cvs add” because the former gets everything with a
single command, and provides a consistent tag.

18.4. Updating a package to a newer version
Please always put a concise, appropriate and relevant summary of the changes between old and new
versions into the commit log when updating a package. There are various reasons for this:

• A URL is volatile, and can change over time. It may go away completely or its information may be
overwritten by newer information.

• Having the change information between old and new versions in our CVS repository is very useful for
people who use either cvs or anoncvs.

• Having the change information between old and new versions in our CVS repository is very useful for
people who read the pkgsrc-changes mailing list, so that they can make tactical decisions about when
to upgrade the package.

Please also recognize that, just because a new version of a package has been released, it should not
automatically be upgraded in the CVS repository. We prefer to be conservative in the packages that are
included in pkgsrc - development or beta packages are not really the best thing for most places in which
pkgsrc is used. Please use your judgement about what should go into pkgsrc, and bear in mind that
stability is to be preferred above new and possibly untestedfeatures.

18.5. Moving a package in pkgsrc

1. Make a copy of the directory somewhere else.

2. Remove all CVS dirs.

Alternatively to the first two steps you can also do:

% cvs -d user@cvs.NetBSD.org:/cvsroot export -D today pkgsrc/category/package

98

Chapter 18. Submitting and Committing

and use that for further work.

3. Fix CATEGORIESand anyDEPENDSpaths that just did “../package” instead of
“../../category/package”.

4. cvs import the modified package in the new place.

5. Check if any package depends on it:

% cd /usr/pkgsrc

% grep /package */*/Makefile* */*/buildlink*

6. Fix paths in packages from step 5 to point to new location.

7. cvs rm (-f) the package at the old location.

8. Remove fromoldcategory/Makefile .

9. Add tonewcategory/Makefile .

10. Commit the changed and removed files:

% cvs commit oldcategory/package oldcategory/Makefile newcategory/Makefile

(and any packages from step 5, of course).

99

Chapter 19.

Porting pkgsrc

The pkgsrc system has already been ported to many operating systems, hardware architectures and
compilers. This chapter explains the necessary steps to make pkgsrc even more portable.

19.1. Porting pkgsrc to a new operating system
To port pkgsrc to a new operating system (calledMyOSin this example), you need to touch the following
files:

bootstrap/mods/mk/ MyOS.sys.mk

This file contains some basic definitions, for example the name of the C compiler.

mk/bsd.prefs.mk

Insert code that defines the variablesOPSYS, OS_VERSION, LOWER_OS_VERSION, LOWER_VENDOR,
MACHINE_ARCH, OBJECT_FMT, APPEND_ELF, and the other variables that appear in this file.

mk/platform/MyOS.mk

This file contains the platform-specific definitions that areused by pkgsrc. Start by copying one of
the other files and edit it to your needs.

mk/platform/MyOS.pkg.dist

This file contains a list of directories, together with theirpermission bits and ownership. These
directories will be created automatically with every package that does not explicitly setNO_MTREE.
There have been some discussions about whether this file is needed at all, but with no result.

mk/platform/MyOS.x11.dist

Just copy one of the pre-existing x11.dist files to yourMyOS.x11.dist .

mk/tools/bootstrap.mk

On some operating systems, the tools that are provided with the base system are not good enough
for pkgsrc. For example, there are many versions of sed(1) that have a narrow limit on the line
length they can process. Therefore pkgsrc brings its own tools, which can be enabled here.

mk/tools/ MyOS.mk

This file defines the paths to all the tools that are needed by one or the other package in pkgsrc, as
well as by pkgsrc itself. Find out where these tools are on your platform and add them.

Now, you should be able to build some basic packages, likelang/perl5 , shells/bash .

100

Chapter 19. Porting pkgsrc

19.2. Adding support for a new compiler
TODO

101

Appendix A.

A simple example package:
bison

We checked to find a piece of software that wasn’t in the packages collection, and picked GNU bison.
Quite why someone would want to havebison when Berkeleyyacc is already present in the tree is
beyond us, but it’s useful for the purposes of this exercise.

A.1. files

A.1.1. Makefile

$NetBSD$
#

DISTNAME= bison-1.25
CATEGORIES= devel
MASTER_SITES= ${MASTER_SITE_GNU}

MAINTAINER= thorpej@NetBSD.org
HOMEPAGE= http://www.gnu.org/software/bison/bison.ht ml
COMMENT= GNU yacc clone

GNU_CONFIGURE= yes
INFO_FILES= bison.info

.include "../../mk/bsd.pkg.mk"

A.1.2. DESCR

GNU version of yacc. Can make re-entrant parsers, and numero us other
improvements. Why you would want this when Berkeley yacc(1) is part
of the NetBSD source tree is beyond me.

A.1.3. PLIST

@comment $NetBSD$
bin/bison
man/man1/bison.1.gz

102

Appendix A. A simple example package: bison

share/bison.simple
share/bison.hairy

A.1.4. Checking a package with pkglint

The NetBSD package system comes withpkgtools/pkglint which helps to check the contents of
these files. After installation it is quite easy to use, just change to the directory of the package you wish
to examine and executepkglint :

$ pkglint

looks fine.

Depending on the supplied command line arguments (see pkglint(1)), more checks will be performed.
Use e.g.pkglint -Call -Wall for a very thorough check.

A.2. Steps for building, installing, packaging
Create the directory where the package lives, plus any auxiliary directories:

cd /usr/pkgsrc/lang

mkdir bison

cd bison

mkdir patches

CreateMakefile , DESCRandPLIST (seeChapter 8) then continue with fetching the distfile:

make fetch

>> bison-1.25.tar.gz doesn’t seem to exist on this system.
>> Attempting to fetch from ftp://prep.ai.mit.edu/pub/gn u//.
Requesting ftp://prep.ai.mit.edu/pub/gnu//bison-1.25 .tar.gz (via ftp://orpheus.amdahl.com:80/)
ftp: Error retrieving file: 500 Internal error

>> Attempting to fetch from ftp://wuarchive.wustl.edu/sy stems/gnu//.
Requesting ftp://wuarchive.wustl.edu/systems/gnu//bi son-1.25.tar.gz (via ftp://orpheus.amdahl.com:80/)
ftp: Error retrieving file: 500 Internal error

>> Attempting to fetch from ftp://ftp.freebsd.org/pub/Fr eeBSD/distfiles//.
Requesting ftp://ftp.freebsd.org/pub/FreeBSD/distfil es//bison-1.25.tar.gz (via ftp://orpheus.amdahl.com:8 0/)
Successfully retrieved file.

Generate the checksum of the distfile intodistinfo :

make makesum

Now compile:

make

>> Checksum OK for bison-1.25.tar.gz.
===> Extracting for bison-1.25
===> Patching for bison-1.25

103

Appendix A. A simple example package: bison

===> Ignoring empty patch directory
===> Configuring for bison-1.25
creating cache ./config.cache
checking for gcc... cc
checking whether we are using GNU C... yes
checking for a BSD compatible install... /usr/bin/install -c -o bin -g bin
checking how to run the C preprocessor... cc -E
checking for minix/config.h... no
checking for POSIXized ISC... no
checking whether cross-compiling... no
checking for ANSI C header files... yes
checking for string.h... yes
checking for stdlib.h... yes
checking for memory.h... yes
checking for working const... yes
checking for working alloca.h... no
checking for alloca... yes
checking for strerror... yes
updating cache ./config.cache
creating ./config.status
creating Makefile
===> Building for bison-1.25
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DXPFILE=\"/usr/pkg/share/bison.simple\" -DXPFIL E1=\"/usr/pkg/share/bison.hairy\"
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1
cc -g -o bison LR0.o allocate.o closure.o conflicts.o deriv es.o files.o getargs.o
./files.c:240: warning: mktemp() possibly used unsafely, consider using mkstemp()
rm -f bison.s1
sed -e "/^#line/ s|bison|/usr/pkg/share/bison|" < ./biso n.simple > bison.s1

Everything seems OK, so install the files:

make install

>> Checksum OK for bison-1.25.tar.gz.
===> Installing for bison-1.25

104

Appendix A. A simple example package: bison

sh ./mkinstalldirs /usr/pkg/bin /usr/pkg/share /usr/pkg /info /usr/pkg/man/man1
rm -f /usr/pkg/bin/bison
cd /usr/pkg/share; rm -f bison.simple bison.hairy
rm -f /usr/pkg/man/man1/bison.1 /usr/pkg/info/bison.in fo *
install -c -o bin -g bin -m 555 bison /usr/pkg/bin/bison
/usr/bin/install -c -o bin -g bin -m 644 bison.s1 /usr/pkg/s hare/bison.simple
/usr/bin/install -c -o bin -g bin -m 644 ./bison.hairy /usr/ pkg/share/bison.hairy
cd .; for f in bison.info * ; do /usr/bin/install -c -o bin -g bin -m 644 $f /usr/pkg/info /$f;
/usr/bin/install -c -o bin -g bin -m 644 ./bison.1 /usr/pkg/ man/man1/bison.1
===> Registering installation for bison-1.25

You can now use bison, and also - if you decide so - remove it with pkg_delete bison. Should you decide
that you want a binary package, do this now:

make package

>> Checksum OK for bison-1.25.tar.gz.
===> Building package for bison-1.25
Creating package bison-1.25.tgz
Registering depends:.
Creating gzip’d tar ball in ’/u/pkgsrc/lang/bison/bison- 1.25.tgz’

Now that you don’t need the source and object files any more, clean up:

make clean

===> Cleaning for bison-1.25

105

Appendix B.

Build logs

B.1. Building figlet

make

===> Checking for vulnerabilities in figlet-2.2.1nb2
=> figlet221.tar.gz doesn’t seem to exist on this system.
=> Attempting to fetch figlet221.tar.gz from ftp://ftp.fi glet.org/pub/figlet/program/unix/.
=> [172219 bytes]
Connected to ftp.plig.net.
220 ftp.plig.org NcFTPd Server (licensed copy) ready.
331 Guest login ok, send your complete e-mail address as pass word.
230-You are user #5 of 500 simultaneous users allowed.
230-
230- ___ _ _ _
230- | _| |_ ___ ___| |_|___ ___ ___ ___
230- | _| _| . |_| . | | | . |_| . | _| . |
230- |_| |_| | _|_| _|_|_|_ |_|___|_| |_ |
230- |_| |_| |___| |___|
230-
230- ** Welcome to ftp.plig.org **
230-
230-Please note that all transfers from this FTP site are log ged. If you
230-do not like this, please disconnect now.
230-
230-This arhive is available via
230-
230-HTTP: http://ftp.plig.org/
230-FTP: ftp://ftp.plig.org/ (max 500 connections)
230-RSYNC: rsync://ftp.plig.org/ (max 30 connections)
230-
230-Please email comments, bug reports and requests for pac kages to be
230-mirrored to ftp-admin@plig.org.
230-
230-
230 Logged in anonymously.
Remote system type is UNIX.
Using binary mode to transfer files.
200 Type okay.
250 "/pub" is new cwd.
250-"/pub/figlet" is new cwd.
250-
250-Welcome to the figlet archive at ftp.figlet.org
250-
250- ftp://ftp.figlet.org/pub/figlet/

106

Appendix B. Build logs

250-
250-The official FIGlet web page is:
250- http://www.figlet.org/
250-
250-If you have questions, please mailto:info@figlet.org . If you want to
250-contribute a font or something else, you can email us.
250
250 "/pub/figlet/program" is new cwd.
250 "/pub/figlet/program/unix" is new cwd.
local: figlet221.tar.gz remote: figlet221.tar.gz
502 Unimplemented command.
227 Entering Passive Mode (195,40,6,41,246,104)
150 Data connection accepted from 84.128.86.72:65131; tra nsfer starting for figlet221.tar.gz
38% | ************** | 65800 64.16 KB/s 00:01 ETA
226 Transfer completed.
172219 bytes received in 00:02 (75.99 KB/s)
221 Goodbye.
=> Checksum OK for figlet221.tar.gz.
===> Extracting for figlet-2.2.1nb2
===> Required installed package ccache-[0-9] * : ccache-2.3nb1 found
===> Patching for figlet-2.2.1nb2
===> Applying pkgsrc patches for figlet-2.2.1nb2
===> Overriding tools for figlet-2.2.1nb2
===> Creating toolchain wrappers for figlet-2.2.1nb2
===> Configuring for figlet-2.2.1nb2
===> Building for figlet-2.2.1nb2
gcc -O2 -DDEFAULTFONTDIR=\"/usr/pkg/share/figlet\" -DD EFAULTFONTFILE=\"standard.flf\" figlet.c
chmod a+x figlet
gcc -O2 -o chkfont chkfont.c
=> Unwrapping files-to-be-installed.
#

make install

===> Checking for vulnerabilities in figlet-2.2.1nb2
===> Installing for figlet-2.2.1nb2
install -d -o root -g wheel -m 755 /usr/pkg/bin
install -d -o root -g wheel -m 755 /usr/pkg/man/man6
mkdir -p /usr/pkg/share/figlet
cp figlet /usr/pkg/bin
cp chkfont /usr/pkg/bin
chmod 555 figlist showfigfonts
cp figlist /usr/pkg/bin
cp showfigfonts /usr/pkg/bin
cp fonts/ * .flf /usr/pkg/share/figlet
cp fonts/ * .flc /usr/pkg/share/figlet
cp figlet.6 /usr/pkg/man/man6
===> Registering installation for figlet-2.2.1nb2
#

107

Appendix B. Build logs

B.2. Packaging figlet

make package

===> Checking for vulnerabilities in figlet-2.2.1nb2
===> Packaging figlet-2.2.1nb2
===> Building binary package for figlet-2.2.1nb2
Creating package /home/cvs/pkgsrc/packages/i386/All/f iglet-2.2.1nb2.tgz
Using SrcDir value of /usr/pkg
Registering depends:.
#

108

Appendix C.

Layout of the FTP server’s
package archive

Layout for precompiled binary packages on ftp.NetBSD.org:

/pub/NetBSD/packages/
distfiles/

Unpacked pkgsrc trees
pkgsrc-current -> /pub/NetBSD/NetBSD-current/pkgsrc
pkgsrc-2003Q4 -> N/A
pkgsrc-2004Q1/pkgsrc

pkgsrc archives
pkgsrc-current.tar.gz -> ../NetBSD-current/tar_files/ pkgsrc.tar.gz
pkgsrc-2003Q4.tar.gz -> N/A
pkgsrc-2004Q1.tar.gz -> N/A

Per pkgsrc-release/OS-release/arch package archives
pkgsrc-2003Q4/

NetBSD-1.6.2/
i386/

All/
archivers/

foo -> ../All/foo
...

pkgsrc-2004Q1/
NetBSD-1.6.2/

i386/
All/
...

NetBSD-2.0/
i386/

All/
...

SunOS-5.9/
sparc/

All/
...

x86/
All/
...

Per os-release package archive convenience links

109

Appendix C. Layout of the FTP server’s package archive

NetBSD-1.6.2 -> 1.6.2
1.6.2/

i386 -> ../pkgsrc-2004Q1/NetBSD-1.6.2/i386
m68k/

All/
archivers/

foo -> ../All/foo
...

amiga -> m68k
atari -> m68k
...

2.0 -> NetBSD-2.0 # backward compat, historic
NetBSD-2.0/

i386 -> ../pkgsrc-2004Q1/NetBSD-2.0/i386
SunOS-5.9/

sparc -> ../pkgsrc-2004Q1/SunOS-5.9/sparc
x86 -> ../pkgsrc-2004Q1/SunOS-5.9/x86

To create:

1. Run bulk build, seeSection 6.3

2. Upload /usr/pkgsrc/packages to

ftp://ftp.NetBSD.org/pub/NetBSD/packages/\
pkgsrc-2004Q4/\ # pkgsrc-branch
‘uname -s‘-‘uname -r‘/\ # OS & version
‘uname -p‘ # architecture

3. If necessary, create a symlinkln -s ‘uname -m‘ ‘uname -p‘ (amiga -> m68k, ...)

110

Appendix D.

Editing guidelines for the pkgsrc
guide

This section contains information on editing the pkgsrc guide itself.

D.1. Targets
The pkgsrc guide’s source code is stored inpkgsrc/doc/guide/files , and several files are created
from it:

• pkgsrc/doc/pkgsrc.txt

• pkgsrc/doc/pkgsrc.html

• http://www.NetBSD.org/Documentation/pkgsrc/ : the documentation on the NetBSD website
will be built from pkgsrc and kept up to date on the web server itself. This means youmustmake sure
that your changes haven’t broken the build!

• http://www.NetBSD.org/Documentation/pkgsrc/pkgsrc.p df : PDF version of the pkgsrc
guide.

• http://www.NetBSD.org/Documentation/pkgsrc/pkgsrc.p s : PostScript version of the
pkgsrc guide.

D.2. Procedure
The procedure to edit the pkgsrc guide is:

• Make sure you have the packages needed to re-generate the pkgsrc guide (and other XML-based
NetBSD documentation) installed. These are “netbsd-doc” for creating the ASCII and HTML
versions, and “netbsd-doc-print” for the PostScript and PDF versions. You will need both packages
installed, to make sure documentation is consistent acrossall formats. The packages can be found in
pkgsrc/meta-pkgs/netbsd-doc andpkgsrc/meta-pkgs/netbsd-doc-print .

• Edit the XML file(s) inpkgsrc/doc/guide/files .

• Runmake extract && make do-lint in pkgsrc/doc/guide to check the XML syntax, and fix it if
needed.

• Runmake in pkgsrc/doc/guide to build the HTML and ASCII version.

• If all is well, run make install-docto put the generated files intopkgsrc/doc .

111

Appendix D. Editing guidelines for the pkgsrc guide

• cvs commit pkgsrc/doc/guide/files

• cvs commit -m re-generate pkgsrc/doc/pkgsrc.{html,txt}

• Until the webserver on www.NetBSD.org is really updated automatically to pick up changes to the
pkgsrc guide automatically, also runmake install-htdocs HTDOCSDIR=../../../htdocs(or similar,
adjustHTDOCSDIR!).

• cvs commit htdocs/Documentation/pkgsrc

112

	The pkgsrc guide
	Table of Contents
	Chapter 1.
	What is pkgsrc?
	1.1. Introduction
	1.2. Overview
	1.3. Terminology
	1.4. Typography

	I. The pkgsrc user's guide
	Chapter 2.
	Where to get pkgsrc and how to keep it uptodate
	2.1. As tar file
	2.2. Via SUP
	2.3. Via CVS
	2.4. Keeping pkgsrc uptodate via CVS

	Chapter 3.
	Using pkgsrc on systems other than NetBSD
	3.1. Bootstrapping pkgsrc
	3.2. Platformspecific notes
	3.2.1. Darwin (Mac OS X)
	3.2.1.1. Using a disk image
	3.2.1.2. Using a UFS partition

	3.2.2. FreeBSD
	3.2.3. Interix
	3.2.3.1. When installing Interix/SFU
	3.2.3.2. What to do if Interix/SFU is already installed
	3.2.3.3. Important notes for using pkgsrc
	3.2.3.4. Limitations of the Interix platform
	3.2.3.5. Known issues for pkgsrc on Interix

	3.2.4. IRIX
	3.2.5. Linux
	3.2.6. OpenBSD
	3.2.7. Solaris
	3.2.7.1. If you are using gcc
	3.2.7.2. If you are using Sun WorkShop
	3.2.7.3. Buildling 64bit binaries with SunPro
	3.2.7.4. Common problems

	Chapter 4.
	Using pkgsrc
	4.1. Using binary packages
	4.1.1. Finding binary packages
	4.1.2. Installing binary packages
	4.1.3. A word of warning

	4.2. Building packages from source
	4.2.1. Requirements
	4.2.2. Fetching distfiles
	4.2.3. How to build and install
	4.2.4. Selecting the compiler

	Chapter 5.
	Configuring pkgsrc
	5.1. General configuration
	5.2. Variables affecting the build process
	5.3. Developer/advanced settings
	5.4. Selecting Build Options

	Chapter 6.
	Creating binary packages
	6.1. Building a single binary package
	6.2. Settings for creation of binary packages
	6.3. Doing a bulk build of all packages
	6.3.1. Configuration
	6.3.1.1. build.conf
	6.3.1.2. /etc/mk.conf
	6.3.1.3. prebuild.local

	6.3.2. Other environmental considerations
	6.3.3. Operation
	6.3.4. What it does
	6.3.5. Disk space requirements
	6.3.6. Setting up a sandbox for chrooted builds
	6.3.7. Building a partial set of packages
	6.3.8. Uploading results of a bulk build

	6.4. Creating a multiple CDROM packages collection
	6.4.1. Example of cdpack

	Chapter 7.
	Frequently Asked Questions
	7.1. Are there any mailing lists for pkgrelated discussion?
	7.2. Where's the pkgviews documentation?
	7.3. Utilities for package management (pkgtools)
	7.4. How to use pkgsrc as nonroot
	7.5. How to resume transfers when fetching distfiles?
	7.6. How can I install/use XFree86 from pkgsrc?
	7.7. How can I install/use X.org from pkgsrc?
	7.8. How to fetch files from behind a firewall
	7.9. How do I tell make fetch to do passive FTP?
	7.10. How to fetch all distfiles at once
	7.11. What does Don't know how to make /usr/share/tmac/tmac.andoc mean?
	7.12. What does Could not find bsd.own.mk mean?
	7.13. Using 'sudo' with pkgsrc
	7.14. How do I change the location of configuration files?
	7.15. Automated security checks

	II. The pkgsrc developer's guide
	Chapter 8.
	Package components files, directories and contents
	8.1. Makefile
	8.2. distinfo
	8.3. patches/*
	8.4. Other mandatory files
	8.5. Optional files
	8.6. work*
	8.7. files/*

	Chapter 9.
	Programming in Makefiles
	9.1. Makefile variables
	9.1.1. Naming conventions
	9.2. Code snippets
	9.2.1. Adding things to a list
	9.2.2. Converting an internal list into an external list
	9.2.3. Passing variables to a shell command
	9.2.4. Quoting guideline
	9.2.5. Workaround for a bug in BSD Make

	Chapter 10.
	PLIST issues
	10.1. RCS ID
	10.2. Semiautomatic PLIST generation
	10.3. Tweaking output of make printPLIST
	10.4. Variable substitution in PLIST
	10.5. Man page compression
	10.6. Changing PLIST source with PLISTSRC
	10.7. Platformspecific and differing PLISTs
	10.8. Sharing directories between packages

	Chapter 11.
	Buildlink methodology
	11.1. Converting packages to use buildlink3
	11.2. Writing buildlink3.mk files
	11.2.1. Anatomy of a buildlink3.mk file
	11.2.2. Updating BUILDLINKDEPENDS.pkg in buildlink3.mk files

	11.3. Writing builtin.mk files
	11.3.1. Anatomy of a builtin.mk file
	11.3.2. Global preferences for native or pkgsrc software

	Chapter 12.
	The pkginstall framework
	12.1. Files and directories outside the installation prefix
	12.1.1. Directory manipulation
	12.1.2. File manipulation

	12.2. Configuration files
	12.2.1. How PKGSYSCONFDIR is set
	12.2.2. Telling the software where configuration files are
	12.2.3. Patching installations
	12.2.4. Disabling handling of configuration files

	12.3. System startup scripts
	12.3.1. Disabling handling of system startup scripts

	12.4. System users and groups
	12.5. System shells
	12.5.1. Disabling shell registration

	12.6. Fonts
	12.6.1. Disabling automatic update of the fonts databases

	Chapter 13.
	Options handling
	13.1. Global default options
	13.2. Converting packages to use bsd.options.mk
	13.3. Option Names

	Chapter 14.
	The build process
	14.1. Introduction
	14.2. Program location
	14.3. Directories used during the build process
	14.4. Running a phase
	14.5. The fetch phase
	14.6. The checksum phase
	14.7. The extract phase
	14.8. The patch phase
	14.9. The tools phase
	14.10. The wrapper phase
	14.11. The configure phase
	14.12. The build phase
	14.13. The test phase
	14.14. The install phase
	14.15. The package phase
	14.16. Other helpful targets

	Chapter 15.
	Tools needed for building or running
	15.1. Tools for pkgsrc builds
	15.2. Tools needed by packages
	15.3. Tools provided by platforms

	Chapter 16.
	Making your package work
	16.1. General operation
	16.1.1. How to pull in variables from /etc/mk.conf
	16.1.2. Where to install documentation
	16.1.3. Restricted packages
	16.1.4. Handling dependencies
	16.1.5. Handling conflicts with other packages
	16.1.6. Packages that cannot or should not be built
	16.1.7. Packages which should not be deleted, once installed
	16.1.8. Handling packages with security problems
	16.1.9. How to handle compiler bugs
	16.1.10. How to handle incrementing versions when fixing an existing package
	16.1.11. Portability of packages
	16.1.11.1. ${INSTALL}, ${INSTALLDATADIR}, ...

	16.2. Possible downloading issues
	16.2.1. Packages whose distfiles aren't available for plain downloading
	16.2.2. How to handle modified distfiles with the 'old' name

	16.3. Configuration gotchas
	16.3.1. Shared libraries libtool
	16.3.2. Using libtool on GNU packages that already support libtool
	16.3.3. GNU Autoconf/Automake

	16.4. Building the package
	16.4.1. CPP defines
	16.4.1.1. CPP defines for operating systems
	16.4.1.2. CPP defines for CPUs
	16.4.1.3. CPP defines for compilers

	16.4.2. Examples of CPP defines for some platforms
	16.4.3. Getting a list of CPP defines

	16.5. Package specific actions
	16.5.1. User interaction
	16.5.2. Handling licenses
	16.5.3. Installing score files
	16.5.4. Packages containing perl scripts
	16.5.5. Packages with hardcoded paths to other interpreters
	16.5.6. Packages installing perl modules
	16.5.7. Packages installing info files
	16.5.8. Packages installing man pages
	16.5.9. Packages installing GConf2 data files
	16.5.10. Packages installing scrollkeeper data files
	16.5.11. Packages installing X11 fonts
	16.5.12. Packages installing GTK2 modules
	16.5.13. Packages installing SGML or XML data
	16.5.14. Packages installing extensions to the MIME database
	16.5.15. Packages using intltool
	16.5.16. Packages installing startup scripts
	16.5.17. Packages installing TeX modules

	16.6. Feedback to the author

	Chapter 17.
	Debugging
	Chapter 18.
	Submitting and Committing
	18.1. Submitting your packages
	18.2. General notes when adding, updating, or removing packages
	18.3. Committing: Importing a package into CVS
	18.4. Updating a package to a newer version
	18.5. Moving a package in pkgsrc

	Chapter 19.
	Porting pkgsrc
	19.1. Porting pkgsrc to a new operating system
	19.2. Adding support for a new compiler

	Appendix A.
	A simple example package: bison
	A.1. files
	A.1.1. Makefile
	A.1.2. DESCR
	A.1.3. PLIST
	A.1.4. Checking a package with pkglint

	A.2. Steps for building, installing, packaging

	Appendix B.
	Build logs
	B.1. Building figlet
	B.2. Packaging figlet

	Appendix C.
	Layout of the FTP server's package archive
	Appendix D.
	Editing guidelines for the pkgsrc guide
	D.1. Targets
	D.2. Procedure

