
NetBSD Internals
(2006/01/28)

The NetBSD Developers

NetBSD Internals
by The NetBSD Developers

Published 2006/01/28 09:34:18
Copyright © 2006 The NetBSD Foundation

All brand and product names used in this guide are or may be trademarks or registered trademarks of their respective owners.

NetBSD® is a registered trademark of The NetBSD Foundation,Inc.

Table of Contents
Purpose of this book ...vi

1 Memory management...1

1.1 The UVM virtual memory manager...1
1.1.1 UVM objects...1

1.2 Managing wired memory...2
1.2.1 Malloc types..2

2 File system internals ...3

2.1 vnode layer overview...3
2.1.1 The vnode data field..4
2.1.2 vnode operations..4
2.1.3 The vnode operations vector..6
2.1.4 Executing vnode opearations...7

2.2 VFS layer overview..7
2.2.1 The mount structure...8
2.2.2 VFS operations..8
2.2.3 The VFS operations structure..9

2.3 File systems overview..10
2.3.1 On-disk file systems..10
2.3.2 Network file systems...10
2.3.3 Synthetic file systems..11
2.3.4 Layered file systems..11
2.3.5 Helper file systems..11

2.4 Initialization and cleanup...11
2.5 Mounting and unmounting...12

2.5.1 Mount call arguments..13
2.5.2 The mount utility...13
2.5.3 The fs_mount operation...13

2.5.3.1 Retrieving mount parameters..14
2.5.3.2 Getting the arguments structure..14
2.5.3.3 Updating mount parameters..15
2.5.3.4 Setting up a new mount point...15

2.5.4 The vfs_unmount function..16
2.6 File system statistics...16
2.7 vnode management..17

2.7.1 vnode’s life cycle...17
2.7.2 vnode tags..18
2.7.3 Allocation of a vnode..18
2.7.4 Deallocation of a vnode...18
2.7.5 vnode’s locking protocol...20

2.8 The root vnode...20
2.9 Path name resolution procedure...20

2.9.1 Path name components..21
2.9.2 The lookup algorithm..21
2.9.3 Lookup hints..22

2.10 File management..22

iii

2.10.1 Creation of regular files...23
2.10.2 Creation of hard links..23
2.10.3 Removal of a file..23
2.10.4 Rename of a file...23
2.10.5 Reading and writing..23

2.10.5.1 uio objects...23
2.10.5.2 Getting and putting pages...24
2.10.5.3 Memory-mapping a file...24
2.10.5.4 The read and write operations...25
2.10.5.5 Reading and writing pages..26

2.10.6 Attributes management..26
2.10.6.1 Getting file attributes...27
2.10.6.2 Setting file attributes...27

2.10.7 Time management...28
2.10.8 Access control...29

2.11 Symbolic link management..30
2.11.1 Creation of symbolic links...30
2.11.2 Read of symbolic link’s contents...30

2.12 Directory management...30
2.12.1 Creation of directories...30
2.12.2 Removal of directories...30
2.12.3 Reading directories..30

2.13 Special nodes..32
2.14 NFS support...33
2.15 Step by step file system writing...33

3 Regression testing ...43

3.1 Testing file systems..43

A. Acknowledgements ...44

A.1 Authors..44
A.2 License..44

B. Bibliography ..46

Bibliography...46

iv

List of Tables
2-1. vnode operations summary...4
2-2. VFS operations summary...8

v

Purpose of this book

This book describes the NetBSD Operating System internals.The main idea behind it is to provide solid
documentation for contributors that wish to develop extensions for NetBSD or want to improve its
existing code. Ideally, there should be no need to reverse-engineer the system’s code in order to
understand how something works.

A lot of work is still required to finish this book: some chapters are not finished and some are not even
started. Those parts that are planned but which are still pending to do are already part of the book but are
clearly marked as incomplete by using aXXX marker.

This book is currently maintained by the NetBSD www team (<www@NetBSD.org>). Corrections,
suggestions and extensions should be sent to that address.

vi

Chapter 1

Memory management

XXX: This chapter is extremely incomplete. It currently contains supporting documentation for
Chapter 2but nothing else.

1.1 The UVM virtual memory manager
UVM is the NetBSD’s virtual memory manager.

1.1.1 UVM objects

An UVM object — or also known asuobj— is a contiguous region of virtual memory backed by a
specific system facility. This can be a file (vnode), XXX What else?.

In order to understand what "to be backed by" means, here is a review of some basic concepts of virtual
memory management. In a system with virtual memory support,the system can manage an address space
bigger than the physical amount of memory available to it. The address space is broken into chunks of
fixed size, namelypages, as is the physical memory, which is divided intopage frames.

When the system needs to access a memory address, it can either find the page it belongs to (page hit) or
not (page fault). In the former case, the page is already stored in main memory so its data can be directly
accessed. In the latter case, the page is not present in main memory.

When a page fault occurs, the processor’s memory managementunit (MMU) signals the kernel through
an exception and asks it to handle the fault: this can either result in a resolved page fault or in an error.
Assuming that all memory accesses are correct (and hence there are no errors), the kernel needs to bring
the requested page into memory. But where is the requested page? Is it in the swap space? In a file?
Should it be filled with zeros?

Here is where the backing mechanism enters the game. A backing object defines where the pages should
be read from and where shall them be stored after modifications, if any. Talking about implementation,
reading a page from the backing object is preformed by a getpages function while writing to it is done by
a putpages one.

Example: consider a 32-bit address space, a page size of 4096bytes and an uobj of 40960 bytes (10
pages) starting at the virtual address 0x00010000; this uobj’s backing object is a vnode that represents a
text file in your file system. Assume that the file has not been read at all yet, so none of its pages are in
main memory. Now, the user requests a read from offset 5000 and with a length of 4000. This offset falls
into the uobj’s second page and the ending address (9000) falls into the third page. The kernel converts
these logical offsets into memory addresses (0x00011338 and 0x00012328) and reads all the data
contained in between. So what happens? The MMU causes two page faults and the vnode’s getpages
method is called for each of them, which then reads the pages from the corresponding file, puts them into
main memory and returns control to the caller. At this point,the read has been served.

1

Chapter 1 Memory management

Similarly, pages can be modified in memory after they have been brought to it; at some point, these
changes will need to be flushed to the backing store, which happens with the backing object’s putpages
operation. There are multiple reasons for the flush, including the need to reclaim the least recently used
page frame from main memory, explicitly synchronizing the uobj with its backing store (think about
synchronizing a file system), closing a file, etc.

1.2 Managing wired memory
The malloc(9) and free(9) functions provided by the NetBSD kernel are very similar to their userland
counterparts. They are used to allocate and release wired memory, respectively.

1.2.1 Malloc types

Malloc types are used to group different allocation blocks into logical clusters so that the kernel can
manage them in a more efficient manner.

A malloc type can be defined in a static or dynamic fashion. Types are defined statically when they are
embedded in a piece of code that is linked together the kernelduring build time; if they are part of a
standalone module, they are defined dynamically.

For static declarations, the MALLOC_DEFINE(9) macro is provided, which is then used somewhere in
the global scope of a source file. It has the following signature:

MALLOC_DEFINE(struct malloc_type *type, const char *short_desc, const char

*long_desc);

The first parameter takes the name of the malloc type to be defined; do not let the type shown above
confuse you, because it is an internal detail you ought not know. Malloc types are often named in
uppercase, prefixed byM_. Some examples includeM_TEMP for temporary data,M_SOFTINTR for
soft-interrupt structures, etc.

The second and third parameters are a character string describing the type; the former is a short
description while the later provides a longer one.

For a dynamic declaration, you must first define the type as static within the source file. Later on, the
malloc_type_attach(9) and malloc_type_detach(9) functions are used to notify the kernel about the
presence or removal of the type; this is usually done in the module’s initialization and finalization
routines, respectively.

2

Chapter 2

File system internals

This chapter describes in great detail the concepts behind file system development under NetBSD. It
presents some code examples under the name of egfs, a fictitious file system that stands forexample file
system.

Throughout this chapter, the wordfile is used to refer toany kind of filethat may exist in a file system;
this includes directories, regular files, symbolic links, special devices and named pipes. If there is a need
to mention a file that stores data, the termregular filewill be used explicitly.

Understanding a complex subsystem as the virtual file system(VFS) is can be difficult. The chapter starts
giving an overview on both the vnode (Section 2.1) and the VFS (Section 2.2) layers as well as on the
existing file systems; they should be read in this order. These three sections ought to provide a general
outline on the whole subsystem, making the reader able to read and understand existing code, should he
need to.

Later on, it describes all other details related to file systems implementation and continues to extend the
explanations given in the layers’ overview (but please notethat the information is not duplicated, so a
read of the overview sections is "a must"). These sections may be read in any order, as they are highly
hyperlinked to ease navigation and structured, more or less, as a reference guide.

At the very end there is a section that summarizes, based on ready-to-copy-and-paste code examples,
how to write a file system driver from scratch. Note that this section does not contain explanations per se
but only links to the appropriate sections where each point is described.

2.1 vnode layer overview
A vnode is an abstract representation of an active file withinthe NetBSD kernel; it provides a generic
way to operate on the real file it represents regardless of thefile system it lives on. Thanks to this
abstraction layer, all kernel subsystems only deal with vnodes. It is important to note that there is a
unique vnode for each active file.

A vnode is described by the struct vnode structure; its definition can be found in the
src/sys/sys/vnode.h file and information about its fields is available in the vnode(9) manual page.
The following analyzes the most important ideas related to this structure.

As the rule says, abstract representations must be specialized before they can be instantiated. vnodes are
not an exception: each file system extends both the static anddynamic parts of an vnode as follows:

• The static part — the data fields that represent the object — isextended by attaching a custom data
structure to an vnode instance during its creation. This is done through thev_data field as described
in Section 2.1.1.

3

Chapter 2 File system internals

• The dynamic part — the operations applicable to the object — is extended by attaching a vnode
operations vector to a vnode instance during its creation. This is done through thev_op field as
described inSection 2.1.3.

2.1.1 The vnode data field

Thev_data field in the struct vnode type is a pointer to an external data structure used to represent a file
within a concrete file system. This field must be initialized after allocating a new vnode and must be set
to NULL before releasing it (seeSection 2.7.4).

This external data structure contains any additional information to describe a specific file inside a file
system. In an on-disk file system, this might include the file’s initial cluster, its creation time, its size, etc.
As an example, the NetBSD’s Fast File System (FFS) uses the in-core memory representation of an
inode as the vnode’s data field.

2.1.2 vnode operations

A vnode operation is implemented by a function that follows the following contract: return an integer
describing the operation’s exit status and take a single void * parameter that carries a structure with the
real operation’s arguments.

Using an external structure to describe the operation’s arguments instead of using a regular argument list
has a reason: some file systems extend the vnode with additional, non-standard operations; having a
common prototype makes this possible.

The following table summarizes the standard vnode operations. Keep in mind, though, that each file
system is free to extend this set as it wishes. Also note that the operation’s name is shown in the table as
the macro used to call it (seeSection 2.1.4).

Table 2-1. vnode operations summary

Operation Description See also

VOP_LOOKUP Performs a path name lookup. SeeSection 2.9.

VOP_CREATE Creates a new file. SeeSection 2.10.1.

VOP_MKNOD Creates a new special file (a
device or a named pipe).

SeeSection 2.13.

VOP_LINK Creates a new hard link for a file.SeeSection 2.10.2.

VOP_RENAME Renames a file. SeeSection 2.10.4.

VOP_REMOVE Removes a file. SeeSection 2.10.3.

VOP_OPEN Opens a file.

VOP_CLOSE Closes a file.

VOP_ACCESS Checks access permissions on a
file.

SeeSection 2.10.8.

VOP_GETATTR Gets a file’s attributes. SeeSection 2.10.6.1.

VOP_SETATTR Sets a file’s attributes. SeeSection 2.10.6.2.

4

Chapter 2 File system internals

Operation Description See also

VOP_READ Reads a chunk of data from a
file.

SeeSection 2.10.5.4.

VOP_WRITE Writes a chunk of data to a file. SeeSection 2.10.5.4.

VOP_IOCTL Performs an ioctl(2) on a file.

VOP_FCNTL Performs a fcntl(2) on a file.

VOP_POLL Performs a poll(2) on a file.

VOP_KQFILTER XXX

VOP_REVOKE XXX

VOP_MMAP Maps a file on a memory region.SeeSection 2.10.5.3.

VOP_FSYNC Synchronizes the file with
on-disk contents.

VOP_SEEK XXX

VOP_MKDIR Creates a new directory. SeeSection 2.12.1.

VOP_RMDIR Removes a directory. SeeSection 2.12.2.

VOP_READDIR Reads directory entries from a
directory.

SeeSection 2.12.3.

VOP_SYMLINK Creates a new symbolic link for a
file.

SeeSection 2.11.1.

VOP_READLINK Reads the contents of a symbolic
link.

SeeSection 2.11.2.

VOP_TRUNCATE Truncates a file. SeeSection 2.10.6.2.

VOP_UPDATE Updates a file’s times. SeeSection 2.10.7.

VOP_ABORTOP Aborts an in-progress operation.

VOP_INACTIVE Marks the vnode as inactive. SeeSection 2.7.1.

VOP_RECLAIM Reclaims the vnode. SeeSection 2.7.1.

VOP_LOCK Locks the vnode. SeeSection 2.7.5.

VOP_UNLOCK Unlocks the vnode. SeeSection 2.7.5.

VOP_ISLOCKED Checks whether the vnode is
locked or not.

SeeSection 2.7.5.

VOP_BMAP Maps a logical block number to a
physical block number.

SeeSection 2.10.5.5.

VOP_STRATEGY Performs a file transfer between
the file system’s backing store
and memory.

SeeSection 2.10.5.5.

VOP_PATHCONF Returns pathconf(2) information.

VOP_ADVLOCK XXX

VOP_BWRITE Writes a system buffer.

VOP_GETPAGES Reads memory pages from the
file.

SeeSection 2.10.5.2.

5

Chapter 2 File system internals

Operation Description See also

VOP_PUTPAGES Writes memory pages to the file.SeeSection 2.10.5.2.

2.1.3 The vnode operations vector

Thev_op field in the struct vnode type is a pointer to the vnode operations vector, which maps logical
operations to real functions (as seen inSection 2.1.2). This vector is file system specific as the actions
taken by each operation depend heavily on the file system where the file resides (consider reading a file,
setting its attributes, etc.).

As an example, consider the following snippet; it defines theopen operation and retrieves two
parameters from its arguments structure:

int
egfs_open(void *v)
{

struct vnode *vp = ((struct vop_open_args *)v)->a_vp;
int mode = ((struct vop_open_args *)v)->a_mode;

...
}

The whole set of vnode operations defined by the file system is added to a vector of struct
vnodeopv_entry_desc-type entries, being each entry de description of a single operation. The purpose of
this vector is to define a mapping from logical operations such asvop_open or read ro real functions
such asegfs_open, egfs_read. It is not directly used by the systemunder normal operation. This
vector is not tied to a specific layout: it only lists operations available in the file system it describes, in
any order it whishes. It can even list non-standard (and unknown) operations as well as lack some of the
most basic ones. (The reason is, again, extensibility by third parties.)

There are two minor restrictions, though:

• The first item always points to an operation used in case a non-existent one is called. For example, if
the file system does not implement thevop_bmap operation but some code calls it, the call will be
redirected to this default-catch function. As such, it is often used to provide a generic error routine but
it is also useful in different scenarios. E.g., layered file systems use it to pass the call down the stack.

It is important to note that there are two standard error routines available that implement this
functionality:vn_default_error andgenfs_eopnotsupp. The latter correctly cleans up vnode
references and locks while the former is the traditional error case one. New code should only use the
former.

• The last item always is a pair of null pointers.

Consider the following vector as an example:

const struct vnodeopv_entry_desc egfs_vnodeop_entries[] = {
{ vop_default_desc, vn_default_error },
{ vop_open_desc, egfs_open },
{ vop_read_desc, egfs_read },
... more operations here ...

6

Chapter 2 File system internals

{ NULL, NULL }
};

As stated above, this vector is not directly used by the system; in fact, it only serves to construct a
secondary vector that follows strict ordering rules. This secondary vector is automatically generated by
the kernel during file system initialization, so the code only needs to instruct it to do the conversion.

This secondary vector is defined as a pointer to an array of function pointers of type int (**vops)(void *).
To tell the kernel where this vector is, a mapping between thetwo vectors is stablished through a third
vector of struct vnodeopv_desc-type items. This is easier to understand with an example:

int (**egfs_vnodeop_p)(void *);
const struct vnodeopv_desc egfs_vnodeop_opv_desc =

{ &egfs_vnodeop_p, egfs_vnodeop_entries };

Out of the file-system’s scope, users of the vnode layer will only deal with theegfs_vnodeop_p and
egfs_vnodeop_opv_desc vectors.

2.1.4 Executing vnode opearations

All vnode operations are subject to a very strict locking protocol among several other call and return
contracts. Furthermore, their prototype makes their call rather complex (remember that they receive a
structure with the real arguments). These are some of the reasons why they cannot be called directly
(with a few exceptions that will not be discussed here).

The NetBSD kernel provides a set of macros and functions thatmake the execution of vnode operations
trivial; please note that they are the standard call procedure. These macros are named after the operation
they refer to, all in uppercase, prefixed by theVOP_string. Then, they take the list of arguments that will
be passed to them.

For example, consider the following implementation for theaccess operation:

int
egfs_access(void *v)
{

struct vnode *vp = ((struct vop_access_args *)v)->a_vp;
int mode = ((struct vop_access_args *)v)->a_mode;
struct ucred *cred = ((struct vop_access_args *)v)->a_cred;
struct proc *p = ((struct vop_access_args *)v)->a_p;

...
}

A call to the previous method could look like this:

result = VOP_ACCESS(vp, mode, cred, p);

For more information, see the vnodeops(9) manual page, which describes all the mappings between
vnode operations and their corresponding macros.

7

Chapter 2 File system internals

2.2 VFS layer overview
The kernel’s Virtual File System (VFS) subsystem provides access to all available file systems in an
abstract fashion, just as vnodes do with active files. Each file system is described by a list of well-defined
operations that can be applied to it together with a data structure that keeps its status.

2.2.1 The mount structure

File systems are attached to the virtual directory tree by means of mount points. A mount point is a
redirection from a specific directory1 to a different file system’s root directory and is represented by the
generic struct mount type, which is defined insrc/sys/sys/mount.h.

A file system extends the static part of a struct mount object by attaching a custom data structure to its
mnt_data field. As with vnodes, this happens when allocating the structure.

The kind of information that a file system stores in its mount structure heavily depends on its
implementation. Generally, it will typically include a pointer (either physical or logical) to the file
system’s root node, used as the starting point for further accesses. It may also include several accounting
variables as well as other information whose context is the whole file system attached to a mount point.

2.2.2 VFS operations

A file system driver exposes a well-known interface to the kernel by means of a set of public opeations.
The following table summarizes them all; note that they are sorted according to the order that they take
in the VFS operations vector (seeSection 2.2.3).

Table 2-2. VFS operations summary

Operation Description Considerations See also

fs_mount Mounts a new instance
of the file system.

Must be defined. SeeSection 2.5.

fs_start Makes the file system
operational.

Must be defined.

fs_unmount Unmounts an instance
of the file system.

Must be defined. SeeSection 2.5.

fs_root Gets the file system root
vnode.

Must be defined. SeeSection 2.8.

fs_quotactl Queries or modifies
space quotas.

Must be defined.

fs_statvfs Gets file system
statistics.

Must be defined. SeeSection 2.6.

fs_sync Flushes file system
buffers.

Must be defined.

fs_vget Gets a vnode from a file
identifier.

Must be defined. SeeSection 2.7.3.

fs_fhtovp Converts a NFS file
handle to a vnode.

Must be defined. SeeSection 2.14.

8

Chapter 2 File system internals

Operation Description Considerations See also

fs_vptofh Converts a vnode to a
NFS file handle.

Must be defined. SeeSection 2.14.

fs_init Initializes the file
system driver.

Must be defined. SeeSection 2.4.

fs_reinit Reinitializes the file
system driver.

May be undefined (i.e.,
null).

SeeSection 2.4.

fs_done Finalizes the file system
driver.

Must be defined. SeeSection 2.4.

fs_mountroot Mounts an instance of
the file system as the
root file system.

May be undefined (i.e.,
null).

fs_extattrctl Controls extended
attributes.

The generic
vfs_stdextattrctl

function is provided as a
simple hook for file
systems that do not
support this operation.

The list of VFS operations may eventually change. When that happens, the kernel version numer is
bumped.

2.2.3 The VFS operations structure

Regardless of mount points, a file system provides a struct vfsops structure as defined in
src/sys/sys/mount.h that describes itself type is. Basically, it contains:

• A public identifier, usually named after the file system’s name suffixed by thefs string. As this
identifier is used in multiple places — and specially both in kernel space and in userland —, it is
typically defined as a macro insrc/sys/sys/mount.h. For example:#define MOUNT_EGFS

"egfs".

• A set of function pointers to file system operations. As opposed to vnode operations, VFS ones have
different prototypes because the set of possible VFS operations is well known and cannot be extended
by third party file systems. Please seeSection 2.2.2for more details on the exact contents of this
vector.

• A pointer to a null-terminated vector of struct vnodeopv_desc * const items. These objects are listed
here because, as stated inSection 2.1.3, the system uses them to construct the real vnode operations
vectors upon file system startup.

It is interesting to note that this field may contain more thanone pointer. Some file systems may
provide more than a single set of vnode operations; e.g., a vector for the normal operations, another
one for operations related to named pipes and another one foroperations that act on special devices.
See the FFS code for an example of this andSection 2.13for details on these special vectors.

Consider the following code snipped that illustrates the previous items:

const struct vnodeopv_desc * const egfs_vnodeopv_descs[] = {

9

Chapter 2 File system internals

&egfs_vnodeop_opv_desc,
... more pointers may appear here ...
NULL

};

struct vfsops egfs_vfsops = {
MOUNT_EGFS,
egfs_mount,
egfs_start,
egfs_unmount,
egfs_root,
egfs_quotactl,
egfs_statvfs,
egfs_sync,
egfs_vget,
egfs_fhtovp,
egfs_vptofh,
egfs_init,
NULL, /* fs_reinit: optional */
egfs_done,
NULL, /* fs_mountroot: optional */
vfs_stdextattrctl,
egfs_vnodeopv_descs

};

The kernel needs to know where each instance of this structure is located in order to keep track of the live
file systems. For file systems built inside the kernel’s core,theVFS_ATTACH macro adds the given VFS
operations structure to the appropriate link set. See GNU ld’s info manual for more details on this feature.

VFS_ATTACH(egfs_vfsops);

Standalone file system modules need not do this because the kernel will explicitly get a pointer to the
information structure after the module is loaded.

2.3 File systems overview

2.3.1 On-disk file systems

On-disk file systems are those that store their contents on a physical drive.

• Fast File System (ffs): XXX

• Log-structured File System (lfs): XXX

• Extended 2 File System (ext2fs): XXX

• FAT (msdosfs): XXX

• ISO 9660 (cd9660): XXX

• NTFS (ntfs): XXX

10

Chapter 2 File system internals

2.3.2 Network file systems

• Network File System (nfs): XXX

• Coda (codafs): XXX

2.3.3 Synthetic file systems

• Memory File System (mfs): XXX

• Kernel File System (kernfs): XXX

• Portal File System (portalfs): XXX

• Pseudo-terminal File System (ptyfs): XXX

• Temporary File System (tmpfs): XXX

2.3.4 Layered file systems

• Null File System (nullfs): XXX

• Union File System (unionfs): XXX

• User-map File System (umapfs): XXX

2.3.5 Helper file systems

Helper file systems are just a set of functions used to easily implement other file systems. As such, they
can be considered as libraries. These are:

• fifofs: Implements all operations used to deal with named pipes in a file system.

• genfs: Implements generic operations shared across multiple file systems.

• layerfs: Implements generic operations shared across layered file systems (seeSection 2.3.4).

• specfs: Implements all operations used to deal with specialfiles in a file system.

2.4 Initialization and cleanup
Drivers often have an initialization routine and a finalization one, called when the driver becomes active
(e.g., at system startup) or inactive (e.g., unloading its module) respectively. File systems are subject to
these rules too, so that they can do global tasks as a whole, regardless of any mount point.

These initialization and finalization tasks can be done fromthefs_init andfs_done hooks,
respectively. If the driver is provided as a module, the initialization routine is called when it is loaded and
the cleanup function is executed when it is unloaded. Instead, if it is built into the kernel, the

11

Chapter 2 File system internals

initialization code is executed at very early stages of kernel boot butthe cleanup stuff is never run, not
even when the system is shut down.

Furthremore, thefs_reinit operation is provided to... XXX...

These three operations take the following prototypes:

int fs_init(void);

int fs_reinit(void);

int fs_done(void);

Note how they do not take any parameter, not even a mount point.

As an example, consider the following functions that deal with a malloc type (seeSection 1.2.1) defined
for a specific file system:

MALLOC_DEFINE(M_EGFSMNT, "egfs mount", "egfs mount structures");

void
egfs_init(void)
{

#ifdef _LKM
malloc_type_attach(M_EGFSMNT);

#endif

...
}

void
egfs_done(void)
{

...

#ifdef _LKM
malloc_type_detach(M_EGFSMNT);

#endif
}

12

Chapter 2 File system internals

2.5 Mounting and unmounting
The mount operation, namelyfs_mount, is probably the most complex one in the VFS layer. Its purpose
is to set up a new mount point based on the arguments received from userland. Basically, it receives the
mount point it is operating on and a data structure that describes the mount call parameters.

Unfortunately, this operation has been overloaded with some semantics that do not really belong to it.
More specifically, it is also in charge of updating the mount point parameters as well as fetching them
from userland. This ought to be cleaned up at some point.

We will see all these details in the following subsections.

2.5.1 Mount call arguments

Most file systems pass information from the userland mount utility to the kernel when a new mount point
is set up; this information generally includes user-tunnable properties that tell the kernel how to mount
the file system. This data set is encapsulated in what is knownas the mount arguments structure and is
often named after the file system, prepending the_args string to it.

Keep in mind that this structure is only used to communicate the userland and the kernel. Once the call
that passes the information finishes, it is discarded in the kernel side.

The arguments structure is versioned to make sure that the kernel and the userland always use the same
field layout and size. This is achieved by inserting a field at the very beginning of the object, holding its
version.

For example, imagine a virtual file system — one that is not stored on disk; for real (and very similar)
code, you can look at tmpfs. Its mount arguments structure could describe the ownership of the root
directory or the maximum number of files that the file system may hold:

#define EGFS_ARGSVERSION 1
struct egfs_args {

int ea_version;

off_t ea_size_max;

uid_t ea_root_uid;
gid_t ea_root_gid;
mode_t ea_root_mode;

...
}

2.5.2 The mount utility

XXX: To be written. Slightly describe how a userland mount utility works.

2.5.3 The fs_mount operation

Thefs_mount operation is called whenever a user issues a mount command from userland. It has the
following prototype:

13

Chapter 2 File system internals

int vfs_mount(struct mount *mp, const char *path, void *data, struct
nameidata *ndp, struct proc *p);

The caller, which is always the kernel, sets up a struct mountobject and passes it to this routine through
themp parameter. It also passes the mount arguments structure (asseen inSection 2.5.1) in thedata
parameter. There are several other arguments, but they do not important at this point.

Themp->mnt_flag field indicates what needs to be done (remember that this operation is semantically
overloaded). The following is an outline of all the tasks this function does and also describes the possible
flags for themnt_flag field:

1. If theMNT_GETARGS flag is set inmp>mnt_flag, the operation returns the current mount
parameters for the given mount point.

This is further detailed inSection 2.5.3.1.

2. Copy the mount arguments structure from userland to kernel space using copyin(9).

This is further detailed inSection 2.5.3.2.

3. If theMNT_UPDATE flag is set inmp>mnt_flag, the operation updates the current mount parameters
of the given mount point based on the new arguments given (e.g., upgrade to read-write from
read-only mode).

This is further detailed inSection 2.5.3.3.

4. At this point, if neitherMNT_GETARGS norMNT_UPDATE were set, the operation sets up a new mount
point.

This is further detailed inSection 2.5.3.4.

2.5.3.1 Retrieving mount parameters

When thefs_mount operation is called with theMNT_GETARGS flag inmp->mnt_flag, the routine
creates and fills the mount arguments structure based on the data of the given mount point and returns it
to userland by using copyout(9).

This heavily depends on the file system, but consider the following simple example:

if (mp->mnt_flag & MNT_GETARGS) {
struct egfs_args args;
struct egfs_mount *emp;

if (mp->mnt_data == NULL)
return EIO;

emp = (struct egfs_mount *)mp->mnt_data;

args.ea_version = EGFS_ARGSVERSION;

... fill the args structure here ...

return copyout(&args, data, sizeof(args));
}

14

Chapter 2 File system internals

2.5.3.2 Getting the arguments structure

Thedata argument given to thefs_mount operation points to a memory region in user-space.
Therefore, it must be first copied into kernel-space by meansof copyin(9) to be able to access it in a safe
fashion.

Here is a little example:

int error;
struct egfs_args args;

if (data == NULL)
return EINVAL;

error = copyin(data, &args, sizeof(args));
if (error)

return error;

if (args.ea_version != EGFS_ARGSVERSION)
return EINVAL;

2.5.3.3 Updating mount parameters

When thefs_mount operation is called with theMNT_UPDATE flag inmp->mnt_flag, the routine
modifies the current parameters of the given mount point based on the new parameters given in the
mount arguments structure.

2.5.3.4 Setting up a new mount point

If neitherMNT_GETARGS norMNT_UPDATE were set inmp->mnt_data when callingfs_mount, the
operation sets up a new mount point. In other words: it fills the struct mount object given inmp with
correct data.

The very first thing that it usually does is to allocate a structure that defines the mount point. This
structure is named after the file system, appending the_mount string to it, and is often very similar to the
mount arguments structure. Once allocated and filled with appropriate data, the object is attached to the
mount point by means of itsmnt_data field.

Later on, the operation gets a file system identifier for the mount point being set up using the
vfs_getnewfsid(9) function and assigns.

At last, it sets up any statvfs-related information for the mount point by using the set_statvfs_info(9)
function.

This is all clearer by looking at a simple code example:

emp = (struct egfs_mount *)malloc(sizeof(struct egfs_mount), M_EGFSMOUNT, M_WAITOK);
KASSERT(emp != NULL);

/* Fill the emp structure with file system dependent values. */
emp->em_root_uid = args.ea_rood_uid;
... more comes here ...

15

Chapter 2 File system internals

mp->mnt_data = emp;
mp->mnt_flag = MNT_LOCAL;
mp->mnt_stat.f_namemax = MAXNAMLEN;
vfs_getnewfsid(mp);

return set_statvfs_info(path, UIO_USERSPACE, args.ea_fspec, UIO_SYSSPACE, mp, p);

2.5.4 The vfs_unmount function

Unmounting a file system is often easier than mounting it, plus there is no need to write a file system
dependent userland utility to do an unmount. This is accomplished by thefs_unmount operation, which
has the following signature:

int fs_unmount(struct mount *mp, int mntflags, struct proc *p);

The function’s outline is similar to the following:

1. Ask the kernel to finalize all pending I/O on the given mountpoint. This is done through the
vflush(9) function. Note that its last argument is a flags bitfield which must carry theFORCECLOSE
flag if the file system is being forcibly unmounted — in other words, if theMNT_FORCE flag was set
in mntflags.

2. Free all resources attached to the mount point — i.e., to the mount structure pointed to by
mp->mnt_data. This heavily depends on the file system internals.

3. Destroy the file system specific mount structure and detachit from themp mount point.

Here is a simple example of the previous outline:

int error, flags;
struct egfs_mount *emp;

flags = (mntflags & MNT_FORCE) ? FORCECLOSE : 0;

error = vflush(mp, NULL, flags);
if (error != 0)

return error;

emp = (struct egfs_mount *)mp->mnt_data;
... free emp contents here ...

free(mp->mnt_data, M_EGFSMNT);
mp->mnt_data = NULL;

return 0;

16

Chapter 2 File system internals

2.6 File system statistics
The statvfs(2) system call is used to retrieve statistical information about a mounted file system, such as
its block size, number of used blocks, etc. This is implemented in the file system driver by the
fs_statvfs operation whose prototype is:

int fs_statvfs(struct mount *mp, struct statvfs *sbp, struct proc *p);

The execution flow of this operation is quite simple: it basically fills sbp’s fields with appropriate data.
This data is derivable from the current status of the file system — e.g., through the contents of
mp->mnt_data.

It is interesting to note that some of the information returned by this operation is stored in the generic
part of themp structure, shared across all file systems. The copy_statvfs_info(9) function takes care to
copy this common information into the resulting structure with minimum efforts. Among other things, it
copies the file system’s identifier, the number of writes, themaximum length of file names, etc.

As a general rule of thumb, the code infs_statvfs manually initializes the following fields in thesbp
structure:f_iosize, f_frsize, f_bsize, f_blocks, f_bavail, f_bfree, f_bresvd, f_files,
f_favail, f_ffree andf_fresvd. Detailes information about each field can be found in statvfs(2).

For example, the operation’s content may look like:

... fill sbp’s fields as described above ...

copy_statvfs_info(sbp, mp);

return 0;

2.7 vnode management

2.7.1 vnode’s life cycle

A vnode, like any other system object, has to be allocated before it can be used. Similarly, it has to be
released and deallocated when unused. Things are a bit special when it comes to handling a vnode, hence
this whole section dedicated to explain it.

XXX: A graph could be excellent to have at this point.

A vnode is first brought to live by the getnewvnode(9) function; this returns a clean vnode that can be
used to represent a file. This new vnode is also marked asusedand remains as such until it is marked
inactive. A vnode is inactivated by callingVOP_INACTIVE on it and, when this happens, it becomes part
of the free list.

Thefree list, despite its confusing name, contains real, live, but not currently used vnodes. It is like a big
LRU list. vnodes can be brought to life again from this list byusing the vget(9) function, and when that
happens, they leave the free list and are marked as used againuntil they are inactivated. Why does this
list exist, anyway? For example, think about all the commands that need to do path lookups on/usr.
Anything in/usr/bin, /usr/sbin, /usr/pkg/bin and/usr/pkg/sbin will need the/usr vnode.

17

Chapter 2 File system internals

If it had to be regenerated from scratch each time, it could beslow. Therefore, it is kept around on the
free list.

vnodes on the free list can also bereclaimed which means that they are effectively killed. This can
either happen because the vnode is being reused for a new vnode (throughgetnewvnode) or because it
is being shutted down (e.g., due to a revoke(2)).

Note that thekern.maxvnodes sysctl(2) node specifies how many vnodes can be kept active ata time.

2.7.2 vnode tags

vnodes are tagged to identify their type. The tag attached tothem must not be used within the kernel; it is
only provided to let userland applications (such as pstat(8)) to print information about vnodes.

Note that its usage is deprecated because it is not extensible from dynamically loadable modules.
However, since they are currently used, each file system defines a tag to describe its own vnodes. These
tags can be found insrc/sys/sys/vnode.h and vnode(9).

2.7.3 Allocation of a vnode

vnodes are allocated in three different scenarios:

• Access to existing files: the kernel does a file name lookup as described inSection 2.9.2. When the
vnode lookup operation finds a match, it allocates a vnode forthe chosen file and returns it to the
system.

• Creation of a new file: the file system specific code allocates anew vnode after the successful creation
of the new file and returns it to the file system generic code. This can happen as a result of the vnode
create, mkdir, mknod and symlink operations.

• Access to a file through a NFS file handle: when the file system isasked to convert an NFS file handle
to a vnode through the fhtovp vnode operation, it may need to allocate a new vnode to represent the
file. SeeSection 2.14.

It is important to recall that vnodes are unique per file. Special care is taken to avoid allocating more than
one vnode for a single physicall file. ach file system has its own method to achieve this; as an example,
tmpfs keeps a map between file system nodes and vnodes, where the former are its keys.

However, please do note that there may be files with no in-corerepresentation (i.e., no vnode). Only
active and inactive but not-yet-reclaimed files are represented by a vnode.

A simple example that illustrates vnode allocation can be found in thetmpfs_alloc_vp function of
src/sys/fs/tmpfs/tmpfs_subr.c.

XXX: I think fs_vget has to be described in this section.

2.7.4 Deallocation of a vnode

The procedure to deallocate vnodes is usually trivial: it generally cleans up any file system specific
information that may be attached to the vnode.

18

Chapter 2 File system internals

Keep in mind that there isa single placein the code where vnodes can be detached from their underlying
nodes and destroyed. This place is in the vnode reclaim operation. Doing it from any other place will
surely cause further trouble because the vnode may still be active or reusable (seeSection 2.7.1).

Note that thev_data pointer must be set to null before exiting the reclaim vnode operation or the system
will complain because the vnode was not properly cleaned.

This function is also in charge of releasing the underlying real node, if needed. For example, when a file
is deleted the corresponding vnode operation is executed — be it a delete or a rmdir — but the vnode is
not released until it is reclaimed. This means that if the real node was deleted before this happened, the
vnode would be left pointing to an invalid memory area.

Consider the following sample operation:

int
egfs_reclaim(void *v)
{

struct vnode *vp = ((struct vop_reclaim_args *)v)->a_vp;

struct egfs_node *node;

node = (struct egfs_node *)vp->v_data;

cache_purge(vp);
vp->v_data = NULL;
node->en_vnode = NULL;

if (node->en_nlinks == 0)
... free the underlying node ...

return 0;
}

However, keep in mind that releasing (marking it inactive) avnode is not the same as reclaiming it. The
real reclaiming will often happen at a much later time, unless explicitly requested. The operations that
remove files from disk often execute the reclaim code on purpose so that the vnode and its associated
disk space is released as soon as possible. This can be done byusing the vrecycle(9) function.

As an example:

int
egfs_inactive(void *v)
{

struct vnode *vp = ((struct vop_inactive_args *)v)->a_vp;

struct egfs_node *node;

node = (struct egfs_node *)vp->v_data;

if (node->en_nlinks == 0) {
/* The file was deleted from the disk; reclaim it as

* soon as possible to free its physical space. */
vrecycle(vp, NULL, p);

}

19

Chapter 2 File system internals

return 0;
}

2.7.5 vnode’s locking protocol

vnodes have, as almost all other system objects, a locking protocol associated to them to avoid access
interferences and deadlocks. These may arise in two scenarios:

• In uniprocessor systems: a vnode operation returns before the operation is complete, thus having to
lock the vnode to prevent unrelated modifications until the operation finishes. This happens because
most file systems are asynchronous.

For example: the read operation prepares a read to a file, launches it, puts the process requesting the
read to sleep and yields execution to another process. Some time later, the disk responds with the
requested data, returning it to the original process, whichis awoken. The system must ensure that
while the process was sleeping, the vnode suffers no changes.

• In multiprocessor systems: two different CPUs want to access the same file at the same time, thus
needing to pass through the same vnode to reach it. Furthermore, the same problems that appear in
uniprocessor systems can also appear here.

Each vnode operation has a specific locking contract it must comply to„ which is often different from
other operations (this makes the protocol very complex and ought to be simplified). These contracts are
described in vnode(9) and vnodeops(9). You can also find themin the form of assertions in tmpfs’ code,
should you want to see them expressed in logical notation.

As regards vnode operations, each file system implements locking primitives in the vnode layer. These
primitives allow to lock a vnode (vop_lock), unlock it (vop_unlock) and test whether it is locked or
not (vop_islocked). Given that these operations are common to all file systems,the genfs pseudo-file
system provides a set of functions that can be used instead ofhaving to write custom ones. These are
genfs_lock, genfs_unlock andgenfs_islocked and are always used except for very rare cases.

It is very important to note thatvop_lock is never used directly. Instead, the vn_lock(9) function is used
to lock vnodes. Unlocking, however, is in charge ofvop_unlock.

2.8 The root vnode
As described inSection 2.9, the kernel does all path name lookups in an iterative way. This means that in
order to reach any file within a mount point, it must first traverse the mount point itself. In other words,
the mount point is the only place through which the system canaccess a file system and thus it must be
able to resolve it.

In order to accomplish this, each file system provides thefs_root hook which returns a vnode
representing its root node. The prototype for this functionis:

int fs_root(struct mount *mp, struct vnode **vpp);

20

Chapter 2 File system internals

2.9 Path name resolution procedure
XXX Write an introduction.

2.9.1 Path name components

A path name component is a non-divisible part of a complete path name — one that does not contain the
slash (/) character. Any path name that includes one or more slashes in it can be divided in two or more
different atoms.

Path name components are represented by struct componentname objects (defined in
src/sys/sys/namei.h), heavily used by several vnode operations. The following are its most
important fields:

• cn_flags: A bitfield that describes the element. Of special interest is theHASBUF flag, which
indicates that this object holds a valid path name buffer (see thecn_pnbuf field below).

• cn_pnbuf: A pointer to the buffer holding the complete path name. Thisis only valid if the
cn_flags bitfield has theHASBUF flag.

In most situations, this buffer is automatically allocatedand deallocated by the system, but this is not
always true. Sometimes, it is necessary to free it in some of the vnode operations themselves;
vnodeops(9) gives more details about this.

• cn_nameptr: A pointer withincn_pnbuf that specifies the start of the path name component
described by this object. Mustalwaysbe used in conjunction withcn_namelen.

• cn_namelen: The length of this path name component, starting atcn_nameptr.

2.9.2 The lookup algorithm

To resolve a path name(or to lookup a path name) means to get a vnode that uniquely represents based
on a previously specified path name, be it absolute or relative.

The NetBSD kernel uses a two-level iterative algorithm to resolve path names. The first level is file
system independent and is carried on by the namei(9) function, while the second one relies on internal
file system details and is achieved through the lookup vnode operation.

The following list illustrates the lookup algorithm. Lots of details have been left out from it to make
things simpler; namei(9) and vnodeops(9) contain all the missing information:

XXX: <wrstuden> I think you simplified the description too much. You left out lookup(), and ascribe
certain actions to namei() when they are performed by lookup(). While I like your attempt to keep it
simple, I think both namei() and lookup() need describing. lookup() takes a path name and turns it into a
vnode, and namei() takes the result and handles symbolic link resolution.

XXX: <jmmv> I currently don’t know very much about the internals of lookup() and namei(), so I’ve left
the simplified description in the document, temporarily.

1.namei constructs acnp path name component (of type struct componentname as described in
Section 2.9.1); its buffer holds the complete path name to look for. The component pointers are
adjusted to describe the path name’s first component.

21

Chapter 2 File system internals

2. Thenamei operation gets the vnode for the lookup’s starting point (always a directory). For
absolute path names, this is the root directory’s vnode. Forrelative path names, it is the current
working directory’s vnode, as seen by the callling userlandprocess.

This vnode is generally calleddvp, standing fordirectory vnode pointer.

3.namei calls the vnode lookup operation on thedvp vnode, telling it which is the component it has to
resolve (cnp) starting from the given directory.

4. If the component exists in the directory, the vnode lookupoperation must return a vnode for its
respective entry.

However, if the component does not exist in the directory, the lookup will fail returning an
appropriate error code. There are several other error conditions that have to be reported, all of them
appropriately described in vnodeops(9).

5.namei updatesdvp to point to the returned vnode and advancescnp to the next component, only if
there are more components to look for. In that case, the procedure continues from3.

In case there are no more components to look for,namei returns the vnode of the last entry it
located.

There are several reasons behind this two-level lookup mechanism, but they have been left over for
simplicity. XXX: The 4.4BSD book gives them all; we should either link to it or explain these here in our
own words (preferably the latter).

2.9.3 Lookup hints

One of the arguments passed to the lookup algorithm is a hint that specifies the kind of lookup to
execute. This hint specifies whether the lookup is for a file creation (CREATE), a deletion (DELETE) or a
name change (RENAME). The file system uses these hints to speed up the corresponding operation —
generally to cache some values that will be used while processing the real operation later on.

For example, consider the unlink(2) system call whose purpose is to delete the given file name. This
operation issues a lookup to ensure that the file exists and toget a vnode for it. This way, it is able to call
the vnode’s remove operation. So far, so good. Now, the operation itself has to delete the file, but
removing a file means, among other things, detaching it from the directory containing it. How can the
remove operation access the directory entry that pointed tothe file being removed? Obviously, it can do
another lookup and traverse a potentially long directory. But is this really needed?

Remember that unlink(2) first got a vnode for the entry to be removed. This implied doing a lookup,
which traversed the file’s parent directory looking for its entry. The algorithm reached the entry once, so
there is no need to repeat the process once we are in the vnode operation itself.

In the above situation, the second lookup is avoided by caching the affected directory entry while the
lookup operation is executed. This is only done when theDELETE hint is given.

The same situation arises with file creations (because new entries may be overwrite previously deleted
entries in on-disk file systems) or name changes (because theoperation needs to modify the associated
directory entry).

22

Chapter 2 File system internals

2.10 File management
XXX: Write an introduction.

2.10.1 Creation of regular files

XXX: To be written. Describe vop_create.

2.10.2 Creation of hard links

XXX: To be written. Describe vop_link.

2.10.3 Removal of a file

XXX: To be written. Describe vop_remove.

2.10.4 Rename of a file

XXX: To be written. Describe vop_rename.

2.10.5 Reading and writing

vnodes have an operation to read data from them (vop_read) and one to write data to them
(vop_write) both called by their respective system calls, read(2) and write(2). The read operation
receives an offset from which the read starts, a number that specifies the number of bytes to read (length)
and a buffer into which the data will be stored. Similarly, the write operation receives an offset from
which the write starts, the number of bytes to write and a buffer from which the data is read.

There is also the mmap(2) system call which maps a file into memory and provides userland direct
access to the mapped memory region.

2.10.5.1 uio objects

The struct uio type describes a data transfer between two different buffers. One of them is stored within
the uio object while the other one is external (often living in userland space). These objects are created
when a new data transfer starts and are alive until the transfer finishes completely; in other words, they
identify a specific transfer.

The following is a description of the most important fields instruct uio (the ones needed for basic
understanding on how it works). For a complete list, see uiomove(9).

• uio_offset: The offset within the file from which the transfer starts. Ifthe transfer is a read, the
offset must be within the file size limits; if it is a write, it can extend beyond the end of the file — in
which case the file is extended.

• uio_resid (also known as theresidual count): Number of bytes remaining to be transferred for this
object.

23

Chapter 2 File system internals

• A set of pointers to buffers into/from which the data will be read/written. These are not used directly
and hence their names have been left out.

• A flag that indicates if data should be read from or written to the buffers described by the uio object.

This may be easier to understand by discussing a little example. Consider the following userland
program:

char buffer[1024];
lseek(fd, 100, SEEK_SET);
read(fd, buffer, 1024);

The read(2) system call constructs an uio object containingan offset of 100 bytes and a residual count of
1024 bytes, making the uio’s buffers point tobuffer and marking them as the data’s target. If this was a
write operation, the uio object’s buffers could be the data’s source.

In order to simplify uio object management, the kernel provides the uiomove(9) function, whose
signature is:

int uiomove(void *buf, size_tn, struct uio *uio);

This function copies up ton bytes between the kernel buffer pointed to bybuf into the addresses
described by theuio instance. If the transfer is successful, the uio object is updated so thatuio_resid
is decremented by the amount of data copied,uio_offset is increased by the same amount and the
internal buffer pointers are updated accordingly. This eases callinguiomove repeatedly (e.g., from
within a loop) until the transfer is complete.

2.10.5.2 Getting and putting pages

As seen inSection 2.10.5.1, data transfers are described by a high-level object that does not take into
account any detail of the underlying file system. More specifically, they are not tied to any specific
on-disk block organization. (Remember that most on-disk file systems store data scattered across the disk
(due to fragmentation); therefore, the transfers have to bebroken up into pieces to read or write the data
from the appropriate disk blocks.)

Breaking the transfer into pieces, requesting them to the disk and handling the results is a (very) complex
operation. Fortunately, the UVM memory subsystem (seeSection 1.1) simplifies the whole task. Each
vnode has a struct uvm_object (as described inSection 1.1.1) associated to it, backed by a vnode.

The vnode backs up the uobj through itsvop_getpages andvop_putpages operations. As these two
operations are very generic (from the point of view of managing memory pages), genfs provides two
generic functions to implement them. These aregenfs_getpages andgenfs_putpages, which will
usually suit the needs of any on-disk file system. How they deal with specific file system details is
something detailed inSection 2.10.5.5.

2.10.5.3 Memory-mapping a file

Thanks to the particular UBC implementation in NetBSD (seeSection 2.10.5.2), a file can be trivially
mapped into memory. The mmap(2) system call is used to achieve this and the kernel handles it

24

Chapter 2 File system internals

independently from the file system.

XXX: Should describe where mmap is really handled.

2.10.5.4 The read and write operations

Thanks to the particular UBC implementation in NetBSD (seeSection 2.10.5.2), the vnode’s read and
write operations (vop_read andvop_write respectively) are very simple because they only deal with
virtual memory. Basically, all they need to do is memory-mapthe affected part of the file and then issue a
simple memory copy operation.

As an example, consider the following sample read code:

int
egfs_read(void *v)
{

struct vnode *vp = ((struct vop_read_args *)v)->a_vp;
struct uio *uio = ((struct vop_read_args *)v)->a_uio;

int error;
struct egfs_node *node;

node = (struct egfs_node *)vp->v_data;

if (uio->uio_offset < 0)
return EINVAL;

if (uio->uio_resid == 0 || uio->uio_offset >= node->en_size)
return 0;

if (vp->v_type == VREG) {
error = 0;
while (uio->uio_resid > 0 && error == 0) {

int flags;
off_t len;
void *win;

len = MIN(uio->uio_resid, node->en_size -
uio->uio_offset);

if (len == 0)
break;

win = ubc_alloc(&vp->v_uobj, uio->uio_offset,
&len, UBC_READ);

error = uiomove(win, len, uio);
flags = UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0;
ubc_release(win, flags);

}
} else {

... left out for simplicity (if needed) ...
}

return error;

25

Chapter 2 File system internals

}

2.10.5.5 Reading and writing pages

As seen inSection 2.10.5.2, thegenfs_getpages andgenfs_putpages functions are enough for
most on-disk file systems. But if they are abstract, how do they deal with the specific details of each file
system? E.g., if the system wants to fetch the third page of the/foo/bar file, how does it know which
on-disk blocks needs it read to bring the requested page to memory? Where does the real transfer take
place?

The mapping between memory pages and disk blocks is done by the vnode’s bmap operation,
vop_bmap, called by the paging functions. This receives the file’s logical block number to be accessed
and converts it to the internal, file system specific block number.

Once bmap returns the physical block number to be accessed, the generic page handling functions check
whether the block is already in memory or not. If it is not, a transfer is done by using the vnode’s strategy
operation (vop_strategy).

More information about these operations can be found in the vnodeops(9) manual page.

2.10.6 Attributes management

Within the NetBSD kernel, a file has a set of standard and well-known attributes associated to it. These
are:

• A type: specifies whether the file is a regular file (VREG), a directory (VDIR), a symbolic link (VLNK), a
special device (VCHR or VBLK), a named pipe (VFIFO) or a socket (VSOCK). The constants mentioned
here are the vnode types, which do not necessarily match the internal type representation of a file
within a file system.

• An ownership: that is, a user id and a group id.

• An access mode.

• A set of flags: these include the immutable flag, the append-only flag, the archived flag, the opaque
flag and the nodump flag. See chflags(2) for more information.

• A hard link count.

• A set of times: these include the birth time, the change time,the access time and the modification time.
SeeSection 2.10.7for more details.

• A size: the exact size of the file, in bytes.

• A device number: in case of a special device (character or block ones), its number is also stored.

The NetBSD kernel uses the struct vattr type (detailed in vattr(9)) to handle all these attributes all in a
compact way. Based on this set, each file system typically supports these attributes in its node
representation structure (unless they are ficticious and faked when accessed). For example, FFS could
store them in inodes, while FAT could save only some of them and fake the others at run time (such as
the ownership).

26

Chapter 2 File system internals

A struct vattr instance is initialized by using theVATTR_NULL macro, which sets its vnode type toVNON
and all of its other fields toVNOVAL, indicating that they have no valid values. After using thismacro, it
is the responsibility of the caller to set all the fields it wants to the correct values. The consumer of the
object shall not use those fields whose value is unset (VNOVAL).

It is interesting to note that there are no vnode operations that match the regular system calls used to set
the file ownership, its mode, etc. Instead, nodes provide twooperations that act on the whole attribute set:
vop_getattrs to read them andvop_setattrs to set them. The rest of this section describes them.

2.10.6.1 Getting file attributes

Thevop_getattr vnode operation fetches all the standard attributes from a given vnode. All it does is
fill the givenstruct vattr structure with the correct values. For example:

int
egfs_getattr(void *v)
{

struct vnode *vp = ((struct vop_getattr_args *)v)->a_vp;
struct vattr *vap = ((struct vop_getattr_args *)v)->a_vap;

struct egfs_node *node;

node = (struct egfs_node *)vp->v_data;

VATTR_NULL(vap);

switch (node->en_type) {
case EGFS_NODE_DIR:

vap->va_type = VDIR;
break;

case ...:
...
}
vap->va_mode = node->en_mode;
vap->va_uid = node->en_uid;
vap->va_gid = node->en_gid;
vap->va_nlink = node->en_nlink;
vap->va_flags = node->en_flags;
vap->va_size = node->en_size;
... continue filling values ...

return 0;
}

2.10.6.2 Setting file attributes

Similarly to thevop_getattr operation,vop_setattr sets a subset of file attributes at once. Only
those attributes which are notVNOVAL are changed. Furthermore, the operation ensures that the caller is
not trying to set unsettable values; for example, one cannotset (i.e., change) the file type.

27

Chapter 2 File system internals

Of special interest is that the file’s size can be changed as anattribute. In other words, this operation is
the entry point for file truncation calls and it is its responsibility to call vop_truncate when
appropriate. The system never calls the vnode’s truncate operation directly.

A little sketch:

int
egfs_setattr(void *v)
{

struct vnode *vp = ((struct vop_setattr_args *)v)->a_vp;
struct vattr *vap = ((struct vop_setattr_args *)v)->a_vap;
struct ucred *cred = ((struct vop_setattr_args *)v)->a_cred;
struct proc *p = ((struct vop_setattr_args *)v)->a_p;

/* Do not allow setting unsettable values. */
if (vap->va_type != VNON || vap->va_nlink != VNOVAL || ...)

return EINVAL;

if (vap->va_flags != VNOVAL) {
... set node flags here ...
if error, return it

}

if (vap->va_size != VNOVAL) {
... verify file type ...
error = VOP_TRUNCATE(vp, size, 0, cred, p);
if error, return it

}

... etcetera ...

return 0;
}

2.10.7 Time management

Each node has four times associated to it, all of them represented by struct timespec objects. These times
are:

• Birth time: the time the file was born. Cannot be changed afterthe file is created.

• Access time: the time the file was last accessed.

• Change time: the time the file’s node was last changed. For example, if a new hard link for an existing
file is created, its change time is updated.

• Modification time: the time the file’s contents were last modified.

Given that these times reflect the last accesses to the underlying files, they need to be modified extremely
often. If this was done synchronously, it could impose a big performance penalty on files accessed
repeatedly. This is why time updates are done in a delayed manner.

28

Chapter 2 File system internals

Nodes usually have a set of flags (which are only kept in memory, never written to disk) that indicate
their status to let asynchronoous actions know what to do. These flags are used, among other things, to
indicate that a file’s times have to be updated. They are set assoon as the file is changed but the times are
not really modified until the vnode’s update operation (vop_update) is called; see vnodeops(9) for more
details on this.

vop_update is called asynchronously by the kernel from time to time. However, a file system may opt
to execute it on purpose as it whishes; such a situation may bewhen it is mounted synchronously, as it
will be updating the times as soon as the changes happen.

2.10.8 Access control

The file system is in charge of ensuring that a request is validor not, permission-wise. This is done with
the vnode’s access operation (vop_access), which receives the caller’s credentials and the requested
access mode. The operation then checks if these are compatible with the current attributes of the file
being accessed.

The operation generally follows this structure:

1. If the file system is mounted read only, and the caller wantsto write to a directory, to a link or to a
regular file, then access must be denied.

2. If the file is immutable and the caller wants to write to it, access is denied.

3. At last, vaccess(9) is used to check all remaining access possibilites. This simplifies a lot the code of
this operation.

For example:

int
egfs_access(void *v)
{

struct vnode *vp = ((struct vop_access_args *)v)->a_vp;
int mode = ((struct vop_access_args *)v)->a_mode;
struct ucred *cred = ((struct vop_access_args *)v)->a_cred;

struct egfs_node *node;

node = (struct egfs_node *)vp->v_data;

if (vp->v_type == VDIR || vp->v_type == VLNK || vp->v_type == VREG)
if (mode & VWRITE &&

vp->v_mount->mnt_flag & MNT_RDONLY)
return EROFS;

}

if (mode & VWRITE && mode->tn_flags & IMMUTABLE)
return EPERM;

return vaccess(vp->v_type, node->en_mode, node->en_uid,
node->en_gid, mode, cred);

}

29

Chapter 2 File system internals

2.11 Symbolic link management

2.11.1 Creation of symbolic links

XXX: To be written. Describe vop_symlink.

2.11.2 Read of symbolic link’s contents

XXX: To be written. Describe vop_readlink.

2.12 Directory management
A directory maps file names to file system nodes. The internal representation of a directory depends
heavily on the file system, but the vnode layer provides an abstract way to access them. This includes the
vop_lookup, vop_mkdir, vop_rmdir andvop_readdir operations.

For the rest of this section, assume that the following simple struct egfs_dirent describes a directory
entry:

struct egfs_dirent {
char ed_name[MAXNAMLEN];
int ed_namelen;
off_t ed_fileid;

};

2.12.1 Creation of directories

XXX: To be written. Describe vop_mkdir.

2.12.2 Removal of directories

XXX: To be written. Describe vop_rmdir.

2.12.3 Reading directories

Thevop_readdir operation reads the contents of directory in a file system independent way.
Remember that the regular read operation can also be used forthis purpose, though all it returns is the
exact contents of the directory; this cannot be used by programs that aim to be portable (not to mention
that some file systems do not support this functionality).

This operation returns a struct dirent object (as seen in dirent(5)) for each directory entry it reads from
the offset it was given up to that offset plus the transfer length. Because it must read entire objects, the
offset must always be aligned to a physical directory entry boundary; otherwise, the function shall return
an error. This is not always true, though: some file systems have variable-sized entries and they use
another metric to determine which entry to read (such as its ordering index).

30

Chapter 2 File system internals

It is important to note that the size of the resulting struct dirent objects is variable: it depends on the name
stored in them. Therefore, the code first constructs these objects (settings all its fields by hand) and then
uses the_DIRENT_SIZE macro to calculate its size, later assigned to thed_reclen field. For example:

struct egfs_dirent de;
struct egfs_node *node;
struct dirent d;

... read a directory entry from disk into de ...

... make node point to the de.ed_fileid node ...

switch (node->ed_type) {
case EGFS_NODE_DIR:

d.d_type = DT_DIR;
case ...:
...
}

d.d_namlen = de.ed_namelen;
(void)memcpy(d.d_name, de.ed_name, de.ed_namelen);
d.d_name[de.ed_namelen] = ’\0’;
d.d_reclen = _DIRENT_SIZE(&d);

With this in mind, the operation also ensures that the offsetis correct, locates the first entry to return and
loops until it has exhausted the transmission’s length. Thefollowing illustrates the process:

int
egfs_readdir(void *v)
{

struct vnode *vp = ((struct vop_readdir_args *)v)->a_vp;
struct uio *uio = ((struct vop_readdir_args *)v)->a_uio;
int *eofflag = ((struct vop_readdir_args *)v)->a_eofflag;

int entry_counter;
int error;
off_t startoff;
struct egfs_dirent de;
struct egfs_node *dnode;
struct egfs_node *node;

if (vp->v_type != VDIR)
return ENOTDIR;

if (uio->uio_offset % sizeof(struct egfs_dirent) > 0)
return EINVAL;

dnode = (struct egfs_node *)vp->v_data;

... read the first directory entry into de ...

... make node point to the de.ed_fileid node ...

entry_counter = 0;
startoff = uio->uio_offset;

31

Chapter 2 File system internals

do {
struct dirent d;

... construct d from de ...

error = uiomove(&d, d.d_reclen, uio);

entry_counter++;
... read the next directory entry into de ...
... make node point to the de.ed_fileid node ...

} while (error == 0 && uio->uio_resid > 0
&& de is valid)

/* Important: Update transfer offset to match on-disk

* directory entries, not virtual ones. */
uio->uio_offset = entry_counter * sizeof(egfs_dirent);

if (eofflag != NULL)

*eofflag = (de is invalid?);

return error;
}

File systems that support NFS take some extra steps in this function. See vnodeops(9) for more details.
XXX: Cookies and the eof flag should really be explained here.

2.13 Special nodes
File system that support named pipes and/or special devicesimplement the vnode’s mknod operation
(vop_mknod) in order to create them. This is extremely similar tovop_create. However, it takes some
extra steps because named pipes and special devices are not like regular files: their contents are not
stored in the file system and they have specific access methods. Therefore, they cannot use the file
system’s regular vnode operations vector.

In other words: the file system defines two additional vnode operations vectors: one for named pipes and
one for special devices. Fortunately, this taks is easy because the virtual fifofs
(src/sys/miscfs/fifofs) and specfs (src/sys/miscfs/specfs) file systems provide generic
vnode operations. In general, these vectors use all the generic operations except for a few functions.

Because the on-disk file system has to update the node’s timeswhen accessing these special files, some
operations are implemented on a file system basis and later call the generic operations implemented in
fifofs and specfs. This basically means that those file systems implement their ownvop_close,
vop_read andvop_write operations for named pipes and for special devices.

As a little example of such an operation:

int
egfs_fifo_read(void *v)
{

struct vnode *vp = ((struct vop_read_args *)v)->a_vp;

32

Chapter 2 File system internals

((struct egfs_node *)vp->v_data)->tn_status |= TMPFS_NODE_ACCESSED;
return VOCALL(fifo_vnodeop_p, VOFFSET(vop_read), v);

}

Remember that these two additional operations vectors are added to the vnode operations description
structure; otherwise, they will are not initialized and therefore will not work. SeeSection 2.2.3.

For more sample code, consultsrc/sys/fs/tmpfs/fifofs_vnops.c,
src/sys/fs/tmpfs/fifofs_vnops.h, src/sys/fs/tmpfs/specfs_vnops.c and
src/sys/fs/tmpfs/specfs_vnops.h.

2.14 NFS support
XXX: To be written. Describe vop_fhtovp and vfs_vptofh.

2.15 Step by step file system writing

1. Create thesrc/sys/fs/egfs directory.

2. Create a minimalsrc/sys/fs/egfs/files.egfs file:

deffs fs_egfs.h EGFS
file fs/egfs/egfs_vfsops.c egfs
file fs/egfs/egfs_vnops.c egfs

3. Modify src/sys/conf/files to includefiles.egfs. I.e., add the following line:

include "fs/egfs/files.egfs"

4. Define the file system’s name insrc/sys/sys/mount.h. I.e., add the following line:

#define MOUNT_EGFS "egfs"

5. Define the file system’s vnode tag type.

SeeSection 2.7.2.

6. Add the file system’s magic number in the Linux compatibility layer,
src/sys/compat/linux/common/linux_misc.c and
src/sys/compat/linux/common/linux_misc.h, if applicable. Fallback to the default number
if there is nothing appropriate for the file system.

7. Create a minimalsrc/sys/fs/egfs/egfs_vnops.c file that contains stubs for all vnode
operations.

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: chap-file-system.xml,v 1.1 2006/01/28 09:34:18 jmmv Exp $");

#include <sys/param.h>
#include <sys/vnode.h>

#include <miscfs/genfs/genfs.h>

33

Chapter 2 File system internals

#define egfs_lookup genfs_eopnotsupp
#define egfs_create genfs_eopnotsupp
#define egfs_mknod genfs_eopnotsupp
#define egfs_open genfs_eopnotsupp
#define egfs_close genfs_eopnotsupp
#define egfs_access genfs_eopnotsupp
#define egfs_getattr genfs_eopnotsupp
#define egfs_setattr genfs_eopnotsupp
#define egfs_read genfs_eopnotsupp
#define egfs_write genfs_eopnotsupp
#define egfs_fcntl genfs_eopnotsupp
#define egfs_ioctl genfs_eopnotsupp
#define egfs_poll genfs_eopnotsupp
#define egfs_kqfilter genfs_eopnotsupp
#define egfs_revoke genfs_eopnotsupp
#define egfs_mmap genfs_eopnotsupp
#define egfs_fsync genfs_eopnotsupp
#define egfs_seek genfs_eopnotsupp
#define egfs_remove genfs_eopnotsupp
#define egfs_link genfs_eopnotsupp
#define egfs_rename genfs_eopnotsupp
#define egfs_mkdir genfs_eopnotsupp
#define egfs_rmdir genfs_eopnotsupp
#define egfs_symlink genfs_eopnotsupp
#define egfs_readdir genfs_eopnotsupp
#define egfs_readlink genfs_eopnotsupp
#define egfs_abortop genfs_eopnotsupp
#define egfs_inactive genfs_eopnotsupp
#define egfs_reclaim genfs_eopnotsupp
#define egfs_lock genfs_eopnotsupp
#define egfs_unlock genfs_eopnotsupp
#define egfs_bmap genfs_eopnotsupp
#define egfs_strategy genfs_eopnotsupp
#define egfs_print genfs_eopnotsupp
#define egfs_pathconf genfs_eopnotsupp
#define egfs_islocked genfs_eopnotsupp
#define egfs_advlock genfs_eopnotsupp
#define egfs_blkatoff genfs_eopnotsupp
#define egfs_valloc genfs_eopnotsupp
#define egfs_reallocblks genfs_eopnotsupp
#define egfs_vfree genfs_eopnotsupp
#define egfs_truncate genfs_eopnotsupp
#define egfs_update genfs_eopnotsupp
#define egfs_bwrite genfs_eopnotsupp
#define egfs_getpages genfs_eopnotsupp
#define egfs_putpages genfs_eopnotsupp

int (**egfs_vnodeop_p)(void *);
const struct vnodeopv_entry_desc egfs_vnodeop_entries[] = {

{ &vop_default_desc, vn_default_error },
{ &vop_lookup_desc, egfs_lookup },
{ &vop_create_desc, egfs_create },
{ &vop_mknod_desc, egfs_mknod },

34

Chapter 2 File system internals

{ &vop_open_desc, egfs_open },
{ &vop_close_desc, egfs_close },
{ &vop_access_desc, egfs_access },
{ &vop_getattr_desc, egfs_getattr },
{ &vop_setattr_desc, egfs_setattr },
{ &vop_read_desc, egfs_read },
{ &vop_write_desc, egfs_write },
{ &vop_ioctl_desc, egfs_ioctl },
{ &vop_fcntl_desc, egfs_fcntl },
{ &vop_poll_desc, egfs_poll },
{ &vop_kqfilter_desc, egfs_kqfilter },
{ &vop_revoke_desc, egfs_revoke },
{ &vop_mmap_desc, egfs_mmap },
{ &vop_fsync_desc, egfs_fsync },
{ &vop_seek_desc, egfs_seek },
{ &vop_remove_desc, egfs_remove },
{ &vop_link_desc, egfs_link },
{ &vop_rename_desc, egfs_rename },
{ &vop_mkdir_desc, egfs_mkdir },
{ &vop_rmdir_desc, egfs_rmdir },
{ &vop_symlink_desc, egfs_symlink },
{ &vop_readdir_desc, egfs_readdir },
{ &vop_readlink_desc, egfs_readlink },
{ &vop_abortop_desc, egfs_abortop },
{ &vop_inactive_desc, egfs_inactive },
{ &vop_reclaim_desc, egfs_reclaim },
{ &vop_lock_desc, egfs_lock },
{ &vop_unlock_desc, egfs_unlock },
{ &vop_bmap_desc, egfs_bmap },
{ &vop_strategy_desc, egfs_strategy },
{ &vop_print_desc, egfs_print },
{ &vop_islocked_desc, egfs_islocked },
{ &vop_pathconf_desc, egfs_pathconf },
{ &vop_advlock_desc, egfs_advlock },
{ &vop_blkatoff_desc, egfs_blkatoff },
{ &vop_valloc_desc, egfs_valloc },
{ &vop_reallocblks_desc, egfs_reallocblks },
{ &vop_vfree_desc, egfs_vfree },
{ &vop_truncate_desc, egfs_truncate },
{ &vop_update_desc, egfs_update },
{ &vop_bwrite_desc, egfs_bwrite },
{ &vop_getpages_desc, egfs_getpages },
{ &vop_putpages_desc, egfs_putpages },
{ NULL, NULL }

};
const struct vnodeopv_desc egfs_vnodeop_opv_desc =

{ &egfs_vnodeop_p, egfs_vnodeop_entries };

8. Create a minimalsrc/sys/fs/egfs/egfs_vfsops.c file that contains stubs for all VFS
operations.

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: chap-file-system.xml,v 1.1 2006/01/28 09:34:18 jmmv Exp $");

35

Chapter 2 File system internals

#include <sys/param.h>
#include <sys/mount.h>

static int egfs_mount(struct mount *, const char *, void *,
struct nameidata *, struct proc *);

static int egfs_start(struct mount *, int, struct proc *);
static int egfs_unmount(struct mount *, int, struct proc *);
static int egfs_root(struct mount *, struct vnode **);
static int egfs_quotactl(struct mount *, int, uid_t, void *,

struct proc *);
static int egfs_vget(struct mount *, ino_t, struct vnode **);
static int egfs_fhtovp(struct mount *, struct fid *, struct vnode **);
static int egfs_vptofh(struct vnode *, struct fid *);
static int egfs_statvfs(struct mount *, struct statvfs *, struct proc *);
static int egfs_sync(struct mount *, int, struct ucred *, struct proc *);
static void egfs_init(void);
static void egfs_done(void);
static int egfs_checkexp(struct mount *, struct mbuf *, int *,

struct ucred **);
static int egfs_snapshot(struct mount *, struct vnode *,

struct timespec *);

extern const struct vnodeopv_desc egfs_vnodeop_opv_desc;

const struct vnodeopv_desc * const egfs_vnodeopv_descs[] = {
&egfs_vnodeop_opv_desc,
NULL,

};

struct vfsops egfs_vfsops = {
MOUNT_EGFS,
egfs_mount,
egfs_start,
egfs_unmount,
egfs_root,
egfs_quotactl,
egfs_statvfs,
egfs_sync,
egfs_vget,
egfs_fhtovp,
egfs_vptofh,
egfs_init,
NULL, /* vfs_reinit: not yet (optional) */
egfs_done,
NULL, /* vfs_wassysctl: deprecated */
NULL, /* vfs_mountroot: not yet (optional) */
egfs_checkexp,
egfs_snapshot,
vfs_stdextattrctl,
egfs_vnodeopv_descs

};
VFS_ATTACH(egfs_vfsops);

36

Chapter 2 File system internals

static int
egfs_mount(struct mount *mp, const char *path, void *data,

struct nameidata *ndp, struct proc *p)
{

return EOPNOTSUPP;
}

static int
egfs_start(struct mount *mp, int, struct proc *p)
{

return EOPNOTSUPP;
}

static int
egfs_unmount(struct mount *mp, int, struct proc *p)
{

return EOPNOTSUPP;
}

static int
egfs_root(struct mount *mp, struct vnode **vpp)
{

return EOPNOTSUPP;
}

static int
egfs_quotactl(struct mount *mp, int cmd, uid_t uid, void *arg,

struct proc *p)
{

return EOPNOTSUPP;
}

static int
egfs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
{

return EOPNOTSUPP;
}

static int
egfs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
{

return EOPNOTSUPP;
}

static int
egfs_vptofh(struct vnode *mp, struct fid *fhp)

37

Chapter 2 File system internals

{

return EOPNOTSUPP;
}

static int
egfs_statvfs(struct mount *mp, struct statvfs *sbp, struct proc *p)
{

return EOPNOTSUPP;
}

static int
egfs_sync(struct mount *mp, int waitfor, struct ucred *uc, struct proc *p)
{

return EOPNOTSUPP;
}

static void
egfs_init(void)
{

return EOPNOTSUPP;
}

static void
egfs_done(void)
{

return EOPNOTSUPP;
}

static int
egfs_checkexp(struct mount *mp, struct mbuf *mb, int * wh,

struct ucred **anon)
{

return EOPNOTSUPP;
}

static int
egfs_snapshot(struct mount *mp, struct vnode *vp, struct timespec *ctime)
{

return EOPNOTSUPP;
}

9. Define a new malloc type for the file system and modify theegfs_init andegfs_done hooks to
attach and detach it in the LKM case.

SeeSection 2.4.

38

Chapter 2 File system internals

10. Create thesrc/sys/fs/egfs/egfs.h file, that will define all the structures needed for our file
system.

#if !defined(_EGFS_H_)
define _EGFS_H_
#else
error "egfs.h cannot be included multiple times."
#endif

#if defined(_KERNEL)

struct egfs_mount {
...

};

struct egfs_node {
...

};

#endif /* defined(_KERNEL) */

#define EGFS_ARGSVERSION 1
struct egfs_args {

char *ea_fspec;

int ea_version;

...
};

11. Create thesrc/sbin/mount_egfs directory.

12. Create a simplesrc/sbin/mount_egfs/Makefile file:

.include <bsd.own.mk>

PROG= mount_egfs
SRCS= mount_egfs.c
MAN= mount_egfs.8

CPPFLAGS+= -I${NETBSDSRCDIR}/sys
WARNS= 4

.include <bsd.prog.mk>

13. Create a simplesrc/sbin/mount_egfs/mount_egfs.c program that calls the mount(2) system
call.

XXX: Add an example or link to the corresponding section.

14. Create an emptysrc/sbin/mount_egfs/mount_egfs.8manual page. Details left out from this
guide.

15. Fill in theegfs_mount andegfs_unmount functions.

SeeSection 2.5.

39

Chapter 2 File system internals

16. Fill in theegfs_statvfs function. Return correct data if possible at this point or leave it for a later
step.

17. Set thevop_fsync, vop_bwrite andvop_putpages operations togenfs_nullop. These need
to be defined and return successfully to avoid crashes duringsync(2) and mount(2). We will fill them
in at a later stage.

18. Set thevop_abortop operation togenfs_abortop.

19. Set the locking operations togenfs_lock, genfs_unlock andgenfs_islocked. You will most
likely need locking, so it is better if you get it right from the beginning.

SeeSection 2.7.5.

20. Implement thevop_reclaim andvop_inactive operations to correctly destroy vnodes.

SeeSection 2.7.4.

21. Fill in theegfs_sync function. In case you do not know what do put in it, just returnsuccess
(zero); otherwise, serious problems will arise because it will be impossible for the operating system
to flush your file system.

22. Fill in theegfs_root function. Assuming you already read the file system’s root node from disk (or
whichever backing store you use) and have it in memory, simply allocate and lock a vnode for it.

SeeSection 2.7.3.

int
egfs_root(struct mount *mp, struct vnode **vpp)
{

return egfs_alloc_vp(mp, ((struct egfs_mount *)mp)->em_root, vpp);
}

23. Improve the mount utility to support standard options (see getmntopts(3)) and possibly some file
system specific options too.

24. Implement theegfs_getattr andegfs_setattr functions operations. As a side effect,
implementegfs_update andegfs_sync too. For the latter, you only need an stub that returns
success for now.

SeeSection 2.10.6.

25. Implement theegfs_access operation.

SeeSection 2.10.8.

26. Implement theegfs_print function. This is trivial, as all it has to do is dump vnode information
(its attributes, mostly) on screen, but it will help with debugging.

SeeSection 2.10.8.

27. Implement a simpleegfs_lookup function that can locate any given file; be careful to conform
with the locking protocol described in vnodeops(9), as thispart is really tricky. At this point, you can
forget about the lookup hints (CREATE, DELETE or RENAME); you will add them when needed.

SeeSection 2.9.

28. Implement theegfs_open function. In the general case, this one only needs to verify that the open
mode is correct against the file flags.

40

Chapter 2 File system internals

int
egfs_open(void *v)
{

struct vnode *vp = ((struct vop_open_args *)v)->a_vp;
int mode = ((struct vop_open_args *)v)->a_mode;

struct egfs_node *node;

node = (struct egfs_node *)vp->v_data;

if (node->en_flags & APPEND &&
mode & (FWRITE | O_APPEND)) == FWRITE)

return EPERM;

return 0;
}

29. Implement theegfs_close function. In the general case, this one needs to do nothing aside
returning success.

30. Implement theegfs_readdir operation so that you can start interacting with your file system.
After you add this function, you should be able to list any directory in it, and check that the files’
attributes are shown correctly. And most likely, you will start seeing bugs ;-)

SeeSection 2.12.3.

31. Implement theegfs_mkdir operation. You may need to modify theegfs_lookup function to
honour theCREATE hint.

SeeSection 2.9.3.

32. Implement theegfs_rmdir operation. You may need to modify theegfs_lookup function to
honour theDELETE hint. Note that adding an operation that removes stuff from the file system is
tricky; problems will certainly pop up if you have got bugs inyour vnode allocation code or in the
egfs_inactive or egfs_reclaim functions.

SeeSection 2.9.3andSection 2.7.4.

33. Implement theegfs_create operation to create regular files (VREG) and local sockets (VSOCK) .

34. Implement theegfs_remove operation to delete files.

35. Implement theegfs_link operation to create hard links. Be sure to control the file’s hard link
count correctly.

36. Implement theegfs_rename operation. This one may seem complex due to the amount of
arguments it takes, but it is not so difficult to implement. Just keep in mind that it has to manage
renames as well as moves and in which situation they happen.

37. Implement theegfs_read andegfs_write operations. These are quite simple thanks to the
indirection provided by the vnode’s UVM object.

SeeSection 2.10.5.

38. Redirect theegfs_getpages andegfs_putpages to genfs_getpages andgenfs_putpages
respectively. Should be enough for most file systems.

SeeSection 2.10.5.2.

41

Chapter 2 File system internals

39. Implement theegfs_bmap andegfs_strategy operations.

SeeSection 2.10.5.5.

40. Implement theegfs_truncate operation.

41. Redirect theegfs_fcntl, egfs_ioctl, egfs_poll, egfs_revoke andegfs_mmap operations
to their corresponding ones in genfs. Should be enough for most-filesystems; note that even FFS
does this.

42. Implement theegfs_pathconf operation. This one is trivial, although the documentationin
pathconf(2) and vnodeops(9) is a bit inconsistent.

int
egfs_pathconf(void *v)
{

int name = ((struct vop_pathconf_args *)v)->a_name;
register_t *retval = ((struct vop_pathconf_args *)v)->a_retval;

int error;

switch (name) {
case _PC_LINK_MAX:

*retval = LINK_MAX;
break;

case ...:
...
}

return 0;
}

43. Implement theegfs_symlink andegfs_readlink operations to manage symbolic links.

SeeSection 2.11.

44. Implement theegfs_mknod operation, which adds support for named pipes and special devices.

SeeSection 2.13.

45. Add NFS support. This basically means implementing theegfs_vptofh, egfs_checkexp and
egfs_fhtovp VFS operations.

SeeSection 2.14.

Notes
1. Technically speaking, a mount point needn’t be a directory as you can NFS-mount regular files; the

mount point could be a regular file, but this restriction is deliberately imposed because otherwise, the
system could run out of name space quickly.

42

Chapter 3

Regression testing

Regression testing is an important part of software development. Unfortunately, NetBSD does not have a
consistent regression testing framework. Each subsystem defines its own set of tests in whichever form it
wishes to stress test itself.

This chapter provides some guidelines on how to test different parts of the system, but please do keep in
mind that the whole regression testing framework ought to bereplaced with something better.

XXX: This chapter is extremely incomplete. It currently contains supporting documentation for
Chapter 2but nothing else.

3.1 Testing file systems
Testing file systems this is specially important because they work within kernel space; any unexpected
failure is often fatal and renders the whole system unusable. Also, because there are literally hunderds of
minor details to test, none of them should suffer regressions.

The tests for a given file system are stored inside a directorynamed after it, placed under
src/regress/sys/fs/. For example, the tmpfs test suite lives insrc/regress/sys/fs/tmpfs/.
Generally, this directory is accompanied by aMakefile whoseregress targets executes all the tests
automatically.

The author of this text suggests you to add individual and independent tests for each feature you want to
check, and within these, add as many subtests as you need to ensure that the whole feature works. For
example, if you wanted to verify the mkdir vnode operation, you’d write at_mkdir script that checks its
functionality through the mkdir(1) command. This script could check that directories can be created, that
they cannot be overwritten, that their link count is updatedcorrectly, etc.

tmpfs comes with a good set of generic tests that can be reusedfor other file systems.

43

Appendix A.

Acknowledgements

A.1 Authors

• Julio M. Merino Vidal (../../People/Pages/jmmv.html) wrote most ofChapter 2and small bits of
Chapter 1andChapter 3. These chapters were the foundation of this book.

The initial versions of these chapters were as part of the tmpfs’ development, possible thanks to
Google (http://www.google.com/)’s Summer of Code (http://code.google.com/summerofcode.html)
2005 program.

Thanks also go to William Studenmund for reviewingChapter 2and providing multiple valuable
suggestions.

A.2 License
Copyright (c) 2005, 2006 The NetBSD Foundation, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or othermaterials provided with the distribution.

• All advertising materials mentioning features or use of this software must display the following
acknowledgement:

This product includes software developed by the NetBSD Foundation, Inc. and its contributors.

• Neither the name of The NetBSD Foundation nor the names of itscontributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. ANDCONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

44

Appendix A. Acknowledgements

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

45

Appendix B.

Bibliography

Bibliography

[4.4BSD] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, John S. Quarterman, 1996,
0201549794, Addison-Wesley Professional,The Design and Implementation of the 4.4 BSD
Operating System.

46

	NetBSD Internals
	Table of Contents
	List of Tables
	
	Purpose of this book
	Chapter 1
	Memory management
	1.1 The UVM virtual memory manager
	1.1.1 UVM objects
	1.2 Managing wired memory
	1.2.1 Malloc types

	Chapter 2
	File system internals
	2.1 vnode layer overview
	2.1.1 The vnode data field
	2.1.2 vnode operations
	2.1.3 The vnode operations vector
	2.1.4 Executing vnode opearations

	2.2 VFS layer overview
	2.2.1 The mount structure
	2.2.2 VFS operations
	2.2.3 The VFS operations structure

	2.3 File systems overview
	2.3.1 Ondisk file systems
	2.3.2 Network file systems
	2.3.3 Synthetic file systems
	2.3.4 Layered file systems
	2.3.5 Helper file systems

	2.4 Initialization and cleanup
	2.5 Mounting and unmounting
	2.5.1 Mount call arguments
	2.5.2 The mount utility
	2.5.3 The fsmount operation
	2.5.3.1 Retrieving mount parameters
	2.5.3.2 Getting the arguments structure
	2.5.3.3 Updating mount parameters
	2.5.3.4 Setting up a new mount point

	2.5.4 The vfsunmount function

	2.6 File system statistics
	2.7 vnode management
	2.7.1 vnode's life cycle
	2.7.2 vnode tags
	2.7.3 Allocation of a vnode
	2.7.4 Deallocation of a vnode
	2.7.5 vnode's locking protocol

	2.8 The root vnode
	2.9 Path name resolution procedure
	2.9.1 Path name components
	2.9.2 The lookup algorithm
	2.9.3 Lookup hints

	2.10 File management
	2.10.1 Creation of regular files
	2.10.2 Creation of hard links
	2.10.3 Removal of a file
	2.10.4 Rename of a file
	2.10.5 Reading and writing
	2.10.5.1 uio objects
	2.10.5.2 Getting and putting pages
	2.10.5.3 Memorymapping a file
	2.10.5.4 The read and write operations
	2.10.5.5 Reading and writing pages

	2.10.6 Attributes management
	2.10.6.1 Getting file attributes
	2.10.6.2 Setting file attributes

	2.10.7 Time management
	2.10.8 Access control

	2.11 Symbolic link management
	2.11.1 Creation of symbolic links
	2.11.2 Read of symbolic link's contents

	2.12 Directory management
	2.12.1 Creation of directories
	2.12.2 Removal of directories
	2.12.3 Reading directories

	2.13 Special nodes
	2.14 NFS support
	2.15 Step by step file system writing

	Chapter 3
	Regression testing
	3.1 Testing file systems

	Appendix A.
	Acknowledgements
	A.1 Authors
	A.2 License

	Appendix B.
	Bibliography
	Bibliography

