NetBSD Internals

(2006/01/28)

The NetBSD Developers

NetBSD Internals
by The NetBSD Developers

Published 2006/01/28 09:34:18
Copyright © 2006 The NetBSD Foundation

All brand and product names used in this guide are or may dermarks or registered trademarks of their respective avner

NetBSD® is a registered trademark of The NetBSD Foundatius,

Table of Contents

PUFPOSE Of tRISDOOK ...ttt Vi
T MEMOTY MANAGEMENT ..ot e e e sr et r e s s e es e sreese e n e s r e s e e resr e e arenreennerenneennas 1
1.1 The UVM virtual MemOry MANAGET.........cceuiuuieeeiiiiieesiiieeee s sitieasesseeeesnbteeeessnbeeeessnneeeeaas 1.
00 0 R W A V0 o] =T o £ PP 1

1.2 Managing Wir€d MEMOLY........eeeeeeieiiurieeeereeessesisteereessesassessareseeesesaassssreesreeeesssansnnreseeeras 2
R |V =1 Todm £ 1= PP 2

2 File SYStEM INTEINAIS ..ottt b e b s be b e se e e et b e ebe s be b e e e e eneenas 3
2.1 VNOAE [AYET OVEIVIEW. ...ttt ettt e e e e e e s et e e e e e e e e s e ennnneeaeeean 3
2.1.1 The vNode data field...... ..ot 4.
2.1.2VNOAE OPEIALIONS.....ceeiiiieeieiiiiiiiiieeeee e e ettt ee e e e ettt eeaa e e s s e snnnnnseeeaeeeseenanneneeness D
2.1.3 The vNode Operations VECIQL............uueeiiiieie ittt e e ee e e e 6..
2.1.4 Executing VNOAE OPEAratiONS.uuuiiiiieaeaiiiiiiieieee e e e e e eeeee e e e e e e e e eaa e e s e anees 1.

2.2 VES [AYEI OVEIVIBW. ...t e ettt ettt e e e e ekttt et e e e e e e e et st b e e e e e e eenmeeeaaaeens 7
2.2.1 THhE MOUNE SEIUCLULE.eeiiie i ettt ee e et ee e e e et e e e e e e e e e e 8
2.2.2 VS OPEIAtIONSeiiiiiiiiiittie ettt ee ettt e et e e e e e s s e bbb beeeee e e e e e s e nnbbebeaaaaannes 8
2.2.3 The VFS 0perations StTUCTULcciiia it e et 9.

2.3 File SYSLEIMS OVEIVIBM.ceiiieeeiiiiittiiee it e e e ettt e e e et eeee e e e s s e abbbbe et eeaeaeeesnnnnnaeeaaannns 10
2.3.1 ON-diSK file SYSIEMSciiiiiiiiiiiiiiii et 10.
2.3.2 NetWOrK file SYSIEMS.......cc e 10.
2.3.3 SYNthetiC file SYSIEMS.......uviiiiiie it 11.
2.3. 4 Layered file SYStEMS......ccoiiiiiie e 11
2.3.5 Helper file SYStEMISoii ittt 11

2.4 Initialization and CIEANUPL..........oi i e e e s 11
2.5 Mounting and UNMOUNTING.ccoiiiiiiiiiiiiie et st e et ee e snbeee e e eneees 12
2.5.1 Mount Call argUMENLS........uuuiiiieeeieiiiiiiiee e e e e eee e ereee e e s s e e e e e e e e snnenrneeeeeeees 13.
2.5.2 The MOUNE ULIILY.veeieei e 13
2.5.3 The fS_MOUNt OPEratiON.........cviiieee it eeer e e e e aeeeeeeas 13
2.5.3.1 Retrieving MouNnt ParametersS.......ccuuvevieeeer e iiiiireee e e e e e s eenee e e e e e eneeneeees 14

2.5.3.2 Getting the arguments StrUCILIFE..........ccovv i e e 14

2.5.3.3 Updating MouNt ParameEterS..........ueeeeeeiiiiciirieeeieeeeessseeeees e s ssnnenneeeeeens 15

2.5.3.4 Setting up @ NEW MOUNE POINT......eeviiieeriiiiiiiiiiir e re e e e e e e 15

2.5.4 The vfs_unmount fUNCHIAQN............ouiiiiee e 16

2.6 File SYSEEM SEALISTICS. .. .eeeteiieeiiiitie ettt et ettt e e e e e s ettt e e e e e e e e s nab e eeeaaanenes 16
A aTeTo [N oo g To [T 0 4 1=) AP TP 17
2.7.1VN0AE'S lIfE CYCIO...cci i 17
A B Y g To To [N = 1o L TP PRPR 18
2.7.3 Allocation Of @ VNOAE..........eeeiiiiiiiiiiiie et 18.
2.7.4 Deallocation Of @ VNOUE.........uiiiiiiiiiiieie ettt 18
2.7.5vN0de’s [0CKING ProtOCOL.........cuuiiiiiiieaii it 20

AR N = CeTo] Y/ aTo o [TR USRI 20
2.9 Path name reSolutioN PrOCEALIIE...........uueiiieei et 20
2.9.1 Path Name COMPONENLIS.........uiiiiiiiiaai ittt e e e e e e e eeeees 21
2.9.2 The I00KUP algOrithml.........oeeiie et 21
2.9.3 LOOKUP NINES ...ttt ettt e e e e e e e neeeee e s 22

2. 10 File MANAQGEIMENL.......iiiiii ittt e e et e e e e e e e e e b e be e e e e e e e e e e sebnbeeeaeaannnnneees 22

2.10.1 Creation of regular files............ueeeiiiiiiii e 23

2.10.2 Creation of hard lINKS............oiiiiii e 23
2.10.3 ReMOVAl Of @ Il 23
2.10.4 Rename Of @ fil@......cooii i 23
2.10.5 Rea@ding @nd WITING.uuueiieiaeaie ittt e e e et e e e e e e e e eebaeeeaaeeas 23.
2.10.5.1 UIO ODJECLS....eeeeiiiieei it e e 23

2.10.5.2 Getting and puUtting PAGES.......ccuverieiieee et 24

2.10.5.3 Memory-mapping a file.........ccooi e 24

2.10.5.4 The read and Write OPeratiQNS............cceeieeaaiiiiiiiiiiiee e eeee e e 25

2.10.5.5 Reading and WIitiNg PAGgES. .. . uueeeeeariiiiiiiriieeeae e eeiee e e e eea e 26

2.10.6 Attributes ManagemeNnt..........ooiuiiiiiii e 26
2.10.6.1 Getting file attributes............ooeiiiiii e 27

2.10.6.2 Setting file attribDULES...........euiiiiiii e 27

2.10.7 TIME MANGAGEIMEILutiiiiiiee ettt e e e e et ee e e e e s et e e e e e e e e e e anbesbeeeaaaaaaans 28
2.10.8 ACCESS CONLIOLeiiiiitiiiie ettt ettt ettt et e e e et e e e nne e e eanes 29

2.11 Symbolic lINk Management............uuuiiiieieiiiiiiiiiiie e rener e e e e e e e e e s aeeeee s 30.
2.11.1 Creation of SymboliC INKS.........cccooiiiiiiiiiiiec e ee e 30
2.11.2 Read of symbolic link’s CONtENLS...........cuvviiieeeiiiiciiie e 30

B I B T =Y (o] VA 4 F= g =T =T g LY o R 30
2.12.1 Creation Of dIFECLOMES.ciiiiiiiii ettt 30
2.12.2 RemoVval Of dIr€CIOMESuiieiiiiiie ettt 30

P2 720G I = LT To [T T o 1 (=T od (o] = SR 30.

2. 13 SPECIAI NOUES.eeeiiieeie ettt ettt e s sttt e e s e e e et e e neeee s 32
2. 1A NFS SUPPOE .« ittt ettt e e ettt e e e e e e e e et e sernr e e e e e e 33
2.15 Step by step file SYSteM WGcvviiiiii e e e 33
R {= s =S o gl L= ol SO ST 43
3.1 TeStNG filE SYSIEIMSttt e e et e e e e e s snmnne e e e 43
AL ACKNOWIEOGEMENTS ...ttt se et s et et b et e s b b et et e b et e seesbenseneenes 44
AL AUTNOTS ettt ettt e e e e e et e e e e e e e e e snne e e e e e e e e e aeaeaaae e s 44
F N (o =T 1 TP PRPRR 44
(S =TT o] [TeTo =] 0| 2RSSR 46
(2] o] Teo [£=1 o] 1)V OSSR POPPPUPPPPRR 46

List of Tables

2-1.VNOAE OPEratiONS SUMMIALY.....ceeeeeiiuruuereerereeessssnteneeeseesaasenerereeeesssassssreenreeeeesanasssssereneessssnns 4
2-2. VFS OPEratioNS SUMIMALY.......ccuueieireeeeeesiisitttereeaeeeessasneeeeesssassssnssrreeessssnsssssnnreeeessansnneseseees 8

Purpose of this book

This book describes the NetBSD Operating System interalsmain idea behind it is to provide solid
documentation for contributors that wish to develop extamsfor NetBSD or want to improve its
existing code. Ideally, there should be no need to revengaeer the system’s code in order to
understand how something works.

A lot of work is still required to finish this book: some chaystare not finished and some are not even
started. Those parts that are planned but which are stillipgrio do are already part of the book but are
clearly marked as incomplete by usingo&x marker.

This book is currently maintained by the NetBSD www teamw{®@\et BSD. or g>). Corrections,
suggestions and extensions should be sent to that address.

vi

Chapter 1
Memory management

XXX: This chapter is extremely incomplete. It currently ¢aims supporting documentation for
Chapter 2out nothing else.

1.1 The UVM virtual memory manager

UVM is the NetBSD's virtual memory manager.

1.1.1 UVM objects

An UVM object — or also known asobj— is a contiguous region of virtual memory backed by a
specific system facility. This can be a file (vnode), XXX Whise®.

In order to understand what "to be backed by" means, heresigi@w of some basic concepts of virtual
memory management. In a system with virtual memory supffatsystem can manage an address space
bigger than the physical amount of memory available to ie @lldress space is broken into chunks of
fixed size, namelpagesas is the physical memory, which is divided iqtage frames

When the system needs to access a memory address, it carfiaiiitee page it belongs to (page hit) or
not (page fault). In the former case, the page is alreadgdtormain memory so its data can be directly
accessed. In the latter case, the page is not present in neairon.

When a page fault occurs, the processor’'s memory managemiiiMU) signals the kernel through
an exception and asks it to handle the fault: this can eig®irltin a resolved page fault or in an error.
Assuming that all memory accesses are correct (and heneeateno errors), the kernel needs to bring
the requested page into memory. But where is the requeste®paiit in the swap space? In a file?
Should it be filled with zeros?

Here is where the backing mechanism enters the game. A lzpokjact defines where the pages should
be read from and where shall them be stored after modificgtibany. Talking about implementation,
reading a page from the backing object is preformed by a getpfunction while writing to it is done by
a putpages one.

Example: consider a 32-bit address space, a page size ob4@&6and an uobj of 40960 bytes (10
pages) starting at the virtual address 0x00010000; thigsumdcking object is a vnode that represents a
text file in your file system. Assume that the file has not bead & all yet, so none of its pages are in
main memory. Now, the user requests a read from offset 5000véth a length of 4000. This offset falls
into the uobj's second page and the ending address (900Djrfad the third page. The kernel converts
these logical offsets into memory addresses (0x00011338@00012328) and reads all the data
contained in between. So what happens? The MMU causes tveofgalgs and the vnode’s getpages
method is called for each of them, which then reads the pagesthe corresponding file, puts them into
main memory and returns control to the caller. At this pdim, read has been served.

Chapter 1 Memory management

Similarly, pages can be modified in memory after they have xeeught to it; at some point, these
changes will need to be flushed to the backing store, whichdrapwith the backing object’s putpages
operation. There are multiple reasons for the flush, inclgithe need to reclaim the least recently used
page frame from main memory, explicitly synchronizing tledpwith its backing store (think about
synchronizing a file system), closing a file, etc.

1.2 Managing wired memory

The malloc(9) and free(9) functions provided by the NetB&nlel are very similar to their userland
counterparts. They are used to allocate and release wiratbmgerespectively.

1.2.1 Malloc types

Malloc types are used to group different allocation blocks logical clusters so that the kernel can
manage them in a more efficient manner.

A malloc type can be defined in a static or dynamic fashione$ygre defined statically when they are
embedded in a piece of code that is linked together the keun@ig build time; if they are part of a
standalone module, they are defined dynamically.

For static declarations, the MALLOC_DEFINE(9) macro is\ygded, which is then used somewhere in
the global scope of a source file. It has the following sigreatu

MALLOC DEFI NE(struct nall oc_type *type, const char *short_desc, const char
*| ong_desc);

The first parameter takes the name of the malloc type to beatkfito not let the type shown above
confuse you, because it is an internal detail you ought notkiValloc types are often named in
uppercase, prefixed by . Some examples includé TEMP for temporary datayl SOFTI NTRfor
soft-interrupt structures, etc.

The second and third parameters are a character stringlilagdhe type; the former is a short
description while the later provides a longer one.

For a dynamic declaration, you must first define the type die stéthin the source file. Later on, the
malloc_type_attach(9) and malloc_type detach(9) fonstare used to notify the kernel about the
presence or removal of the type; this is usually done in théut@s initialization and finalization
routines, respectively.

Chapter 2
File system internals

This chapter describes in great detail the concepts behésyfstem development under NetBSD. It
presents some code examples under the name of egfs, algfil®system that stands fexample file
system

Throughout this chapter, the wofitk is used to refer tany kind of filethat may exist in a file system;
this includes directories, regular files, symbolic linksesial devices and named pipes. If there is a need
to mention a file that stores data, the tesgular filewill be used explicitly.

Understanding a complex subsystem as the virtual file sy§#8) is can be difficult. The chapter starts
giving an overview on both the vnod8éction 2.) and the VFS $ection 2.2 layers as well as on the
existing file systems; they should be read in this order. &ieee sections ought to provide a general
outline on the whole subsystem, making the reader able tbaed understand existing code, should he
need to.

Later on, it describes all other details related to file aysténplementation and continues to extend the
explanations given in the layers’ overview (but please tiw¢ the information is not duplicated, so a
read of the overview sections is "a must"). These sectionshmaead in any order, as they are highly
hyperlinked to ease navigation and structured, more oy &ssa reference guide.

At the very end there is a section that summarizes, baseddy-te-copy-and-paste code examples,
how to write a file system driver from scratch. Note that tleist®on does not contain explanations per se
but only links to the appropriate sections where each psidescribed.

2.1 vnode layer overview

A vnode is an abstract representation of an active file witthénNetBSD kernel; it provides a generic
way to operate on the real file it represents regardless diléhgystem it lives on. Thanks to this
abstraction layer, all kernel subsystems only deal withdeso It is important to note that there is a
unigue vnode for each active file

A vnode is described by the struct vnode structure; its defimcan be found in the
src/ sys/ sys/ vnode. h file and information about its fields is available in the vn@enanual page.
The following analyzes the most important ideas relatetiisdtructure.

As the rule says, abstract representations must be sgecidefore they can be instantiated. vnodes are
not an exception: each file system extends both the statidymaimic parts of an vnode as follows:

- The static part — the data fields that represent the objectextended by attaching a custom data
structure to an vnode instance during its creation. Thisreedhrough the_dat a field as described
in Section 2.1.1

Chapter 2 File system internals

« The dynamic part — the operations applicable to the object-extended by attaching a vnode
operations vector to a vnode instance during its creatibis i§ done through the_op field as
described irSection 2.1.3

2.1.1 The vnode data field

Thev_dat a field in the struct vnode type is a pointer to an external d@tectire used to represent a file
within a concrete file system. This field must be initializégrallocating a new vnode and must be set
to NULL before releasing it (se®ection 2.7.1

This external data structure contains any additional mfton to describe a specific file inside a file
system. In an on-disk file system, this might include thediiritial cluster, its creation time, its size, etc.
As an example, the NetBSD’s Fast File System (FFS) uses tberenmemory representation of an
inode as the vnode’s data field.

2.1.2 vnode operations

A vnode operation is implemented by a function that follohe tollowing contract: return an integer
describing the operation’s exit status and take a singlé ¥parameter that carries a structure with the
real operation’s arguments.

Using an external structure to describe the operationigraemts instead of using a regular argument list
has a reason: some file systems extend the vnode with addjtirmn-standard operations; having a
common prototype makes this possible.

The following table summarizes the standard vnode opersitigeep in mind, though, that each file
system is free to extend this set as it wishes. Also note ligabperation’s name is shown in the table as
the macro used to call it (s&ection 2.1.1%

Table 2-1. vnode operations summary

Operation Description See also

VOP_LOOKUP Performs a path name lookup. | SeeSection 2.9

VOP_CREATE Creates a new file. SeeSection 2.10.1

VOP_IMKNCD Creates a new special file (a | SeeSection 2.13
device or a named pipe).

VOP_LI NK Creates a new hard link for a file SeeSection 2.10.2

VOP_RENANVE Renames a file. SeeSection 2.10.4

VOP_REMOVE Removes a file. SeeSection 2.10.3

VOP_OPEN Opens afile.

VOP_CLOSE Closes afile.

VOP_ACCESS Checks access permissions on|&eeSection 2.10.8
file.

VOP_GETATTR Gets afile’s attributes. SeeSection 2.10.6.1

VOP_SETATTR Sets a file’s attributes. SeeSection 2.10.6.2

Chapter 2 File system internals

Operation Description See also

VOP_READ Reads a chunk of data from a | SeeSection 2.10.5.4
file.

VOP_WRI TE Writes a chunk of data to a file.| SeeSection 2.10.5.4

VOP_| OCTL Performs an ioctl(2) on afile.

VOP_FCNTL Performs a fcntl(2) on a file.

VOP_POLL Performs a poll(2) on a file.

VOP_KQFI LTER XXX

VOP_REVOKE XXX

VOP_MVAP Maps a file on a memory region.SeeSection 2.10.5.3

VOP_FSYNC Synchronizes the file with
on-disk contents.

VOP_SEEK XXX

VOP_MKDI R Creates a new directory. SeeSection 2.12.1

VOP_RMDI R Removes a directory. SeeSection 2.12.2

VOP_READDI R Reads directory entries from a | SeeSection 2.12.3
directory.

VOP_SYMLI NK Creates a new symbolic link for|&eeSection 2.11.1

file.

VOP_READLI NK

Reads the contents of a symbo
link.

iBeeSection 2.11.2

VOP_TRUNCATE

Truncates a file.

SeeSection 2.10.6.2

VOP_UPDATE Updates a file's times. SeeSection 2.10.7
VOP_ABORTOP Aborts an in-progress operation.

VOP_I NACTI VE Marks the vnode as inactive. | SeeSection 2.7.1
VOP_RECLAI M Reclaims the vnode. SeeSection 2.7.1
VOP_LOCK Locks the vnode. SeeSection 2.7.5
VOP_UNLOCK Unlocks the vnode. SeeSection 2.7.5

VOP_| SLOCKED

Checks whether the vnode is
locked or not.

SeeSection 2.7.5

VOP_BMAP

Maps a logical block number to
physical block number.

&eeSection 2.10.5.5

VOP_STRATEGY

Performs a file transfer betwee
the file system’s backing store
and memory.

nSeeSection 2.10.5.5

VOP_PATHCONF Returns pathconf(2) information.
VOP_ADVLOCK XXX
VOP_BWRI TE Writes a system buffer.

VOP_GETPAGES

Reads memory pages from the
file.

SeeSection 2.10.5.2

Chapter 2 File system internals

Operation Description See also
VOP_PUTPAGES Writes memory pages to the file SeeSection 2.10.5.2

2.1.3 The vnode operations vector

Thev_op field in the struct vnode type is a pointer to the vnode openativector, which maps logical
operations to real functions (as seersiection 2.1.2 This vector is file system specific as the actions
taken by each operation depend heavily on the file systementherfile resides (consider reading a file,
setting its attributes, etc.).

As an example, consider the following snippet; it definesofben operation and retrieves two
parameters from its arguments structure:

int

egf s_open(void *v)

{
struct vnode *vp = ((struct vop_open_args *)v)->a_vp;
int mode = ((struct vop_open_args *)V)->a_node

}

The whole set of vnode operations defined by the file systemidedito a vector of struct
vhodeopv_entry_desc-type entries, being each entry deigtsn of a single operation. The purpose of
this vector is to define a mapping from logical operation$1sagvop_open orr ead ro real functions
such asgf s_open, egf s_r ead. It is not directly used by the systamder normal operation. This
vector is not tied to a specific layout: it only lists operagavailable in the file system it describes, in
any order it whishes. It can even list non-standard (and owki) operations as well as lack some of the
most basic ones. (The reason is, again, extensibility byl frarties.)

There are two minor restrictions, though:

- The first item always points to an operation used in case aen@tent one is called. For example, if
the file system does not implement th&p_bmap operation but some code calls it, the call will be
redirected to this default-catch function. As such, it ienfused to provide a generic error routine but
it is also useful in different scenarios. E.qg., layered filstems use it to pass the call down the stack.

It is important to note that there are two standard errorinestavailable that implement this
functionality:vn_def aul t _error andgenfs_eopnot supp. The latter correctly cleans up vhode
references and locks while the former is the traditionatecase one. New code should only use the
former.

« The last item always is a pair of null pointers.

Consider the following vector as an example:

const struct vnodeopv_entry_desc egfs_vnodeop_entries[] = {
{ vop_default_desc, vn_default_error },
{ vop_open_desc, egfs_open },
{ vop_read_desc, egfs_read },
nore operations here ...

Chapter 2 File system internals

{ NULL, NULL }
}s

As stated above, this vector is not directly used by the aysitefact, it only serves to construct a
secondary vector that follows strict ordering rules. Tleisandary vector is automatically generated by
the kernel during file system initialization, so the codeyargeds to instruct it to do the conversion.

This secondary vector is defined as a pointer to an array atifumpointers of type int (**vops)(void *).
To tell the kernel where this vector is, a mapping betweeriloevectors is stablished through a third
vector of struct vnodeopv_desc-type items. This is easiantlerstand with an example:

int (x+xegfs_vnodeop_p)(void *);
const struct vnodeopv_desc egfs_vnodeop_opv_desc =
{ &egfs_vnodeop_p, egfs_vnodeop_entries };

Out of the file-system’s scope, users of the vnode layer wily deal with theegf s_vnodeop_p and
egf s_vnodeop_opv_desc vectors.

2.1.4 Executing vnode opearations

All vnode operations are subject to a very strict lockingtpcol among several other call and return
contracts. Furthermore, their prototype makes their edlfiar complex (remember that they receive a
structure with the real arguments). These are some of tisemsavhy they cannot be called directly
(with a few exceptions that will not be discussed here).

The NetBSD kernel provides a set of macros and functionsilaée the execution of vnode operations
trivial; please note that they are the standard call proeedihese macros are named after the operation
they refer to, all in uppercase, prefixed by @ _string. Then, they take the list of arguments that will
be passed to them.

For example, consider the following implementation for #lteess operation:

i nt
egf s_access(voi d *v)
{
struct vnode x*vp = ((struct vop_access_args *)Vv)->a_vp;
int node = ((struct vop_access_args *)v)->a_node;
struct ucred *cred = ((struct vop_access_args *)v)->a_cred;
struct proc *p = ((struct vop_access_args *)Vv)->a_p;
}

A call to the previous method could look like this:
result = VOP_ACCESS(vp, node, cred, p);

For more information, see the vnodeops(9) manual page jwd@scribes all the mappings between
vnode operations and their corresponding macros.

2.2 VFS layer overview

Chapter 2 File system internals

The kernel's Virtual File System (VFS) subsystem provideseas to all available file systems in an
abstract fashion, just as vnodes do with active files. Eaelsyistem is described by a list of well-defined
operations that can be applied to it together with a datzistre that keeps its status.

2.2.1 The mount structure

File systems are attached to the virtual directory tree bgma®f mount points. A mount pointis a
redirection from a specific directorto a different file system’s root directory and is represeigthe

generic struct mount type, which is definedsinc/ sys/ sys/ nount . h.

A file system extends the static part of a struct mount objgetttaching a custom data structure to its
mmt _dat a field. As with vnodes, this happens when allocating the siinec

The kind of information that a file system stores in its mounicture heavily depends on its
implementation. Generally, it will typically include a puer (either physical or logical) to the file
system’s root node, used as the starting point for furtheesses. It may also include several accounting
variables as well as other information whose context is thele/file system attached to a mount point.

2.2.2 VFS operations

A file system driver exposes a well-known interface to thenkéby means of a set of public opeations.
The following table summarizes them all; note that they aréesl according to the order that they take
in the VFS operations vector (s&ection 2.2.3

Table 2-2. VFS operations summary

of the file system.

Operation Description Considerations See also
fs_nount Mounts a new instance| Must be defined. SeeSection 2.5
of the file system.
fs_start Makes the file system | Must be defined.
operational.
fs_unnmount Unmounts an instance | Must be defined. SeeSection 2.5

fs_root

Gets the file system rog
vnode.

tMust be defined.

SeeSection 2.8

fs_quot act | Queries or modifies Must be defined.
space quotas.

fs_statvfs Gets file system Must be defined. SeeSection 2.6
statistics.

fs_sync Flushes file system Must be defined.
buffers.

fs_vget Gets a vnode from a file Must be defined. SeeSection 2.7.3
identifier.

fs_fhtovp Converts a NFS file Must be defined. SeeSection 2.14

handle to a vnode.

Chapter 2 File system internals

driver.

Operation Description Considerations See also

fs_vptofh Converts avnode to a | Must be defined. SeeSection 2.14
NFS file handle.

fs init Initializes the file Must be defined. SeeSection 2.4
system driver.

fs_reinit Reinitializes the file May be undefined (i.e.,| SeeSection 2.4
system driver. null).

fs_done Finalizes the file systemMust be defined. SeeSection 2.4

fs_nountroot

Mounts an instance of
the file system as the
root file system.

May be undefined (i.e.,
null).

fs_extattrctl

Controls extended
attributes.

The generic

vfs stdextattrctl
function is provided as
simple hook for file
systems that do not
support this operation.

The list of VFS operations may eventually change. When thppkns, the kernel version numer is

bumped.

2.2.3 The VFS operations structure

Regardless of mount points, a file system provides a strgopé structure as defined in
src/ sys/ sys/ nount . h that describes itself type is. Basically, it contains:

- A public identifier, usually named after the file system’s mesuffixed by thé s string. As this
identifier is used in multiple places — and specially bothenriel space and in userland —, it is
typically defined as a macro by ¢/ sys/ sys/ mount . h. For example#def i ne MOUNT_EGFS

"egfs".

- A set of function pointers to file system operations. As ogolds vnode operations, VFS ones have
different prototypes because the set of possible VFS dpesais well known and cannot be extended

by third party file systems. Please s&ection 2.2.2or more details on the exact contents of this

vector.

- A pointer to a null-terminated vector of struct vnodeopwsateconst items. These objects are listed
here because, as statedSaction 2.1.3the system uses them to construct the real vnode operations

vectors upon file system startup.

It is interesting to note that this field may contain more thae pointer. Some file systems may

provide more than a single set of vnode operations; e.g ¢@~vfor the normal operations, another
one for operations related to named pipes and another olpévations that act on special devices.

See the FFS code for an example of this &edtion 2.13or details on these special vectors.

Consider the following code snipped that illustrates thevjmus items:

const struct vnodeopv_desc * const egfs_vnodeopv_descs[] =

{

Chapter 2 File system internals

&egf s_vnodeop_opv_desc,
nore pointers may appear here ...
NULL

}s

struct vfsops egfs_vfsops = {
MOUNT_EGFS,
egf s_nount,
egfs_start,
egf s_unnount,
egfs_root,
egfs_quot act |,
egfs_statvfs,
egfs_sync,
egfs_vget,
egfs_fhtovp,
egfs_vptof h,

egfs_init,
NULL, /+ fs_reinit: optional =/
egf s_done,

NULL, /* fs_nopuntroot: optional =/
vfs stdextattrctl,
egf s_vnodeopv_descs

}s

The kernel needs to know where each instance of this streiiglocated in order to keep track of the live
file systems. For file systems built inside the kernel's ctireyFS_ATTACH macro adds the given VFS
operations structure to the appropriate link set. See GRUritb manual for more details on this feature.

VFS_ATTACH(egf s_vf sops) ;

Standalone file system modules need not do this becausertin el explicitly get a pointer to the
information structure after the module is loaded.

2.3 File systems overview

2.3.1 On-disk file systems

On-disk file systems are those that store their contents dwysiqal drive.

- Fast File System (ffs): XXX

« Log-structured File System (Ifs): XXX
- Extended 2 File System (ext2fs): XXX
« FAT (msdosfs): XXX

« 1SO 9660 (cd9660): XXX

« NTFS (ntfs): XXX

10

Chapter 2 File system internals

2.3.2 Network file systems

- Network File System (nfs): XXX
« Coda (codafs): XXX

2.3.3 Synthetic file systems

« Memory File System (mfs): XXX

- Kernel File System (kernfs): XXX

- Portal File System (portalfs): XXX

« Pseudo-terminal File System (ptyfs): XXX
- Temporary File System (tmpfs): XXX

2.3.4 Layered file systems

« Null File System (nullfs): XXX
« Union File System (unionfs): XXX
« User-map File System (umapfs): XXX

2.3.5 Helper file systems

Helper file systems are just a set of functions used to easjiyement other file systems. As such, they
can be considered as libraries. These are:

. fifofs: Implements all operations used to deal with name@®ip a file system.
- genfs: Implements generic operations shared across teditgpsystems.
- layerfs: Implements generic operations shared acrossddy#e systems (se®ection 2.3.%

- specfs: Implements all operations used to deal with spélgalin a file system.

2.4 Initialization and cleanup

Drivers often have an initialization routine and a finaliaatone, called when the driver becomes active
(e.g., at system startup) or inactive (e.g., unloading itslnfe) respectively. File systems are subject to
these rules too, so that they can do global tasks as a whghrdiess of any mount point.

These initialization and finalization tasks can be done filoei s_i ni t andf s_done hooks,
respectively. If the driver is provided as a module, thdati#ation routine is called when it is loaded and
the cleanup function is executed when it is unloaded. lasté# is built into the kernel, the

11

Chapter 2 File system internals

initialization code is executed at very early stages of &eboot butthe cleanup stuff is never runot
even when the system is shut down.

Furthremore, thés_r ei ni t operation is provided to... XXX...

These three operations take the following prototypes:

int fs_init(void);

int fs_reinit(void);

int fs_done(void);

Note how they do not take any parameter, not even a mount.point

As an example, consider the following functions that deahwi malloc type (se8ection 1.2.1defined
for a specific file system:

MALLOC DEFI NE(M_EGFSWNT, "egfs nount", "egfs mount structures");

voi d
egf s_init(void)
{
#i fdef _LKM
mal | oc_type_attach(M EGFSWNT) ;
#endi f
}
voi d
egf s_done(voi d)
{
#i fdef _LKM
mal | oc_t ype_det ach(M_EGFSMWNT) ;
#endi f
}

12

Chapter 2 File system internals

2.5 Mounting and unmounting

The mount operation, namefy_nount , is probably the most complex one in the VFS layer. Its puepos
is to set up a new mount point based on the arguments receadiserland. Basically, it receives the
mount point it is operating on and a data structure that dessthe mount call parameters.

Unfortunately, this operation has been overloaded withessemantics that do not really belong to it.
More specifically, it is also in charge of updating the mousinpparameters as well as fetching them
from userland. This ought to be cleaned up at some point.

We will see all these details in the following subsections.

2.5.1 Mount call arguments

Most file systems pass information from the userland molilitiuto the kernel when a new mount point
is set up; this information generally includes user-tun@gloperties that tell the kernel how to mount
the file system. This data set is encapsulated in what is ka@wthe mount arguments structure and is
often named after the file system, prepending thiegs string to it.

Keep in mind that this structure is only used to communidageuserland and the kernel. Once the call
that passes the information finishes, it is discarded in éneed side.

The arguments structure is versioned to make sure that thelkend the userland always use the same
field layout and size. This is achieved by inserting a fieldhatwery beginning of the object, holding its
version.

For example, imagine a virtual file system — one that is naeston disk; for real (and very similar)
code, you can look at tmpfs. Its mount arguments structunédatescribe the ownership of the root
directory or the maximum number of files that the file systeny hald:

#defi ne EGFS_ARGSVERSI ON 1
struct egfs_args {
int ea_version;

off t ea size nmax;
uid_t ea_root_uid;

gid_t ea_root_gid;
node_t ea_root _node;

2.5.2 The mount utility

XXX: To be written. Slightly describe how a userland mounlitytworks.

2.5.3 The fs_mount operation

Thef s_nmount operation is called whenever a user issues a mount commamcugerland. It has the
following prototype:

13

Chapter 2 File system internals

int vfs_nount(struct nount *np, const char *path, void *data, struct
nanei data *ndp, struct proc *p);

The caller, which is always the kernel, sets up a struct mobjeict and passes it to this routine through
thenp parameter. It also passes the mount arguments structusegasnSection 2.5.1in thedat a
parameter. There are several other arguments, but theytdmportant at this point.

Themp->mt _f | ag field indicates what needs to be done (remember that thistipeiis semantically
overloaded). The following is an outline of all the tasksthinction does and also describes the possible
flags for themt _f 1 ag field:

1. If the MWNT_GETARGS flag is set inmp>mt _f | ag, the operation returns the current mount
parameters for the given mount point.

This is further detailed isection 2.5.3.1
2. Copy the mount arguments structure from userland to kepaee using copyin(9).
This is further detailed isection 2.5.3.2

3. If the MNT_UPDATE flag is set imp>mt _f | ag, the operation updates the current mount parameters
of the given mount point based on the new arguments given (ggrade to read-write from
read-only mode).

This is further detailed ifsection 2.5.3.3

4. At this point, if neitheMNT_GETARGS nor MNT_UPDATE were set, the operation sets up a new mount
point.

This is further detailed ifsection 2.5.3.4

2.5.3.1 Retrieving mount parameters

When thef s_nount operation is called with theNT_GETARGS flag innp- >mt _f | ag, the routine
creates and fills the mount arguments structure based orath®ftithe given mount point and returns it
to userland by using copyout(9).

This heavily depends on the file system, but consider thewiatig simple example:
if (mp->mt_flag & MNT_GETARGS) {

struct egfs_args args;

struct egfs_nount *enp;

if (nmp->mmt_data == NULL)

return EIQ
enp = (struct egfs_nount =*)np->mt_dat a;
args. ea_version = EGFS_ARGSVERSI ON;

fill the args structure here ...

return copyout(&args, data, sizeof(args));

14

Chapter 2 File system internals

2.5.3.2 Getting the arguments structure

Thedat a argument given to thes_nount operation points to a memory region in user-space.
Therefore, it must be first copied into kernel-space by meéospyin(9) to be able to access it in a safe
fashion.

Here is a little example:

int error;
struct egfs_args args;

if (data == NULL)
return ElI NVAL;

error = copyin(data, &args, sizeof(args));
if (error)
return error;

if (args.ea_version != EGFS_ARGSVERSI ON)
return ElI NVAL;

2.5.3.3 Updating mount parameters

When thef s_nount operation is called with theNT_UPDATE flag in np- >mt _f | ag, the routine
modifies the current parameters of the given mount pointdasé¢he new parameters given in the
mount arguments structure.

2.5.3.4 Setting up a new mount point

If neither MNT_GETARGS nor MNT_UPDATE were set imp- >mt _dat a when callingf s_nount , the
operation sets up a new mount point. In other words: it filksgtruct mount object given imp with
correct data.

The very first thing that it usually does is to allocate a dtitesthat defines the mount point. This
structure is named after the file system, appending tfo@nt string to it, and is often very similar to the
mount arguments structure. Once allocated and filled wigh@piate data, the object is attached to the
mount point by means of itent _dat a field.

Later on, the operation gets a file system identifier for thempoint being set up using the
vfs_getnewfsid(9) function and assigns.

At last, it sets up any statvfs-related information for theumt point by using the set_statvfs_info(9)
function.

This is all clearer by looking at a simple code example:

enp = (struct egfs_mount *)mall oc(sizeof (struct egfs_nount), M EG-SMOUNT, M WAl TCK);
KASSERT(enp ! = NULL);

/* Fill the enmp structure with file system dependent val ues. =*/

enp->em root_uid = args. ea_rood_ui d;
nore cones here ...

15

Chapter 2 File system internals

np->mmt _data = enp;

np->mmt _flag = MNT_LOCAL;

np->mt _stat.f_nanmemax = MAXNAMLEN,
vfs_get newf si d(np);

return set_statvfs_info(path, U O USERSPACE, args.ea_fspec, U O SYSSPACE, nmp, p);

2.5.4 The vfs_unmount function

Unmounting a file system is often easier than mounting its piere is no need to write a file system
dependent userland utility to do an unmount. This is accaingtl by thé s_unnount operation, which
has the following signature:

int fs_unnount(struct nount *np, int mtflags, struct proc *p);

The function’s outline is similar to the following:

1. Ask the kernel to finalize all pending 1/0 on the given mopwint. This is done through the
vflush(9) function. Note that its last argument is a flagsdddfivhich must carry thEORCECLOSE
flag if the file system is being forcibly unmounted — in othends if theMNT_FORCE flag was set
inmt f 1 ags.

2. Free all resources attached to the mount point — i.e. gartbunt structure pointed to by
np- >mt _dat a. This heavily depends on the file system internals.

3. Destroy the file system specific mount structure and detdicdm the mp mount point.

Here is a simple example of the previous outline:

int error, flags;
struct egfs_nount =*enp;

flags (mtflags & MNT_FORCE) ? FORCECLOSE : O0;

error = vflush(mp, NULL, flags);
if (error !'=0)

return error,;

enp = (struct egfs_nount =*)np->mt_data;
free enp contents here ...

free(np->mt _data, M EGFSMNT);
np- >mt _data = NULL;

return O;

16

Chapter 2 File system internals

2.6 File system statistics

The statvfs(2) system call is used to retrieve statistid@rimation about a mounted file system, such as
its block size, number of used blocks, etc. This is impleraein the file system driver by the
fs_stat vf s operation whose prototype is:

int fs_statvfs(struct nount *np, struct statvfs *sbp, struct proc *p);

The execution flow of this operation is quite simple: it baflicfills sbp’s fields with appropriate data.
This data is derivable from the current status of the fileeypst— e.g., through the contents of
np- >mt _dat a.

It is interesting to note that some of the information readriby this operation is stored in the generic
part of thenp structure, shared across all file systems. The copy_statiég9) function takes care to
copy this common information into the resulting structuithuninimum efforts. Among other things, it
copies the file system'’s identifier, the number of writes,rttaximum length of file names, etc.

As a general rule of thumb, the codefis_st at vf s manually initializes the following fields in thebp
structuref i osize,f frsize,f _bsize,f _blocks,f bavail,f bfree,f bresvd,f files,
f_favail,f_ffree andf_fresvd. Detailes information about each field can be found in std®)f

For example, the operation’s content may look like:

fill sbp’s fields as described above ...
copy_statvfs_info(sbp, nmp);

return O;

2.7 vnode management

2.7.1 vnode’s life cycle

A vnode, like any other system object, has to be allocatedrbef can be used. Similarly, it has to be
released and deallocated when unused. Things are a biabp#en it comes to handling a vnode, hence
this whole section dedicated to explain it.

XXX: A graph could be excellent to have at this point.

A vnode is first brought to live by the getnewvnode(9) funetithis returns a clean vnode that can be
used to represent a file. This new vnode is also marked@dand remains as such until it is marked
inactive. A vnode is inactivated by callingdP_I NACTI VE on it and, when this happens, it becomes part
of the free list.

Thefree list despite its confusing name, contains real, live, but noterily used vnodes. It is like a big
LRU list. vnodes can be brought to life again from this listusing the vget(9) function, and when that
happens, they leave the free list and are marked as usedwagdithey are inactivated. Why does this
list exist, anyway? For example, think about all the comnsahdt need to do path lookups basr .
Anything in/ usr/ bi n,/ usr/sbin,/ usr/ pkg/ bi nand/ usr/ pkg/ sbi n will need the/ usr vnode.

17

Chapter 2 File system internals

If it had to be regenerated from scratch each time, it coulsltow. Therefore, it is kept around on the
free list.

vnodes on the free list can also becl ai mned which means that they are effectively killed. This can
either happen because the vnode is being reused for a newe {todughget newvnode) or because it
is being shutted down (e.g., due to a revoke(2)).

Note that theker n. maxvnodes sysctl(2) node specifies how many vnodes can be kept actavérae.

2.7.2 vnode tags

vnodes are tagged to identify their type. The tag attach#ueim must not be used within the kernel; it is
only provided to let userland applications (such as psfatédorint information about vnodes.

Note that its usage is deprecated because it is not exterigioh dynamically loadable modules.
However, since they are currently used, each file systemededitag to describe its own vnodes. These
tags can be found isr c/ sys/ sys/ vnode. h and vnode(9).

2.7.3 Allocation of a vnode

vnodes are allocated in three different scenarios:

+ Access to existing files: the kernel does a file name lookugeasribed inrSection 2.9.2When the
vnode lookup operation finds a match, it allocates a vnodthiochosen file and returns it to the
system.

- Creation of a new file: the file system specific code allocatesravnode after the successful creation
of the new file and returns it to the file system generic codés ¢&n happen as a result of the vnode
create, mkdir, mknod and symlink operations.

- Access to a file through a NFS file handle: when the file systeasked to convert an NFS file handle
to a vnode through the fthtovp vnode operation, it may neetldoate a new vnode to represent the
file. SeeSection 2.14

Itis important to recall that vnodes are unique per file. $geare is taken to avoid allocating more than
one vnode for a single physicall file. ach file system has its ovethod to achieve this; as an example,
tmpfs keeps a map between file system nodes and vnodes, \ukdoemer are its keys.

However, please do note that there may be files with no inHegreesentation (i.e., no vnode). Only
active and inactive but not-yet-reclaimed files are represkby a vnode.

A simple example that illustrates vnode allocation can hmtbin thet npf s_al | oc_vp function of
src/sys/ fs/tnpfs/tnpfs_subr.c.

XXX: I think fs_vget has to be described in this section.

2.7.4 Deallocation of a vhode

The procedure to deallocate vnodes is usually trivial: itegally cleans up any file system specific
information that may be attached to the vnode.

18

Chapter 2 File system internals

Keep in mind that there ia single placen the code where vnodes can be detached from their undgrlyin
nodes and destroyed. This place is in the vnode reclaim tiper®oing it from any other place will
surely cause further trouble because the vnode may stiktdeeaor reusable (se®ection 2.7.1L

Note that thes_dat a pointer must be set to null before exiting the reclaim vnopleration or the system
will complain because the vnode was not properly cleaned.

This function is also in charge of releasing the underlyigg) node, if needed. For example, when a file
is deleted the corresponding vnode operation is executee #-abdelete or a rmdir — but the vnode is
not released until it is reclaimed. This means that if thé mede was deleted before this happened, the
vnode would be left pointing to an invalid memory area.

Consider the following sample operation:
int
egf s_reclai mvoid *v)

{

struct vnode x*vp = ((struct vop_reclaimargs *)v)->a_vp;
struct egfs_node *node;
node = (struct egfs_node *)vp->v_data;

cache_purge(vp);
vp->v_data = NULL;
node- >en_vnode = NULL;

i f (node->en_nlinks == 0)
free the underlying node ...

return O;

}

However, keep in mind that releasing (marking it inactivepade is not the same as reclaiming it. The
real reclaiming will often happen at a much later time, uslkesplicitly requested. The operations that
remove files from disk often execute the reclaim code on mego that the vnode and its associated
disk space is released as soon as possible. This can be dasmbyhe vrecycle(9) function.

As an example:
int
egf s_i nactive(void *v)

{ struct vnode x*vp = ((struct vop_inactive_args *)v)->a_vp;
struct egfs_node *node;
node = (struct egfs_node *)vp->v_dat a;
i f (node->en_nlinks == 0) {
/* The file was deleted fromthe disk; reclaimit as

* soon as possible to free its physical space. */
vrecycl e(vp, NULL, p);

19

Chapter 2 File system internals

return O;

2.7.5 vnode’s locking protocol

vnodes have, as almost all other system objects, a lockitgqul associated to them to avoid access
interferences and deadlocks. These may arise in two sosnari

- In uniprocessor systems: a vnode operation returns bdferegeration is complete, thus having to
lock the vnode to prevent unrelated modifications until theration finishes. This happens because
most file systems are asynchronous.

For example: the read operation prepares a read to a filegHasrit, puts the process requesting the
read to sleep and yields execution to another process. Soradeter, the disk responds with the
requested data, returning it to the original process, wisiegtwoken. The system must ensure that
while the process was sleeping, the vnode suffers no changes

+ In multiprocessor systems: two different CPUs want to esties same file at the same time, thus
needing to pass through the same vnode to reach it. Furtheythe same problems that appear in
uniprocessor systems can also appear here.

Each vnode operation has a specific locking contract it musipty to,, which is often different from
other operations (this makes the protocol very complex amghbto be simplified). These contracts are
described in vnode(9) and vnodeops(9). You can also find thehe form of assertions in tmpfs’ code,
should you want to see them expressed in logical notation.

As regards vnode operations, each file system implemerkmbpprimitives in the vnode layer. These
primitives allow to lock a vhodevop_| ock), unlock it (vop_unl ock) and test whether it is locked or
not (vop_i sl ocked). Given that these operations are common to all file systéragjenfs pseudo-file
system provides a set of functions that can be used insteaalofg to write custom ones. These are
genfs_l ock, genfs_unl ock andgenf s_i sl ocked and are always used except for very rare cases.

Itis very important to note thatop_| ock is never used directlynstead, the vn_lock(9) function is used
to lock vnodes. Unlocking, however, is in chargevop_unl ock.

2.8 The root vnode

As described irBection 2.9the kernel does all path name lookups in an iterative waig ifteans that in
order to reach any file within a mount point, it must first tneesthe mount point itself. In other words,
the mount point is the only place through which the systemacaess a file system and thus it must be
able to resolve it.

In order to accomplish this, each file system provided the oot hook which returns a vnode
representing its root node. The prototype for this funcison

int fs_root(struct mount *np, struct vnode **vpp);

20

Chapter 2 File system internals

2.9 Path name resolution procedure

XXX Write an introduction.

2.9.1 Path name components

A path name component is a non-divisible part of a completie pame — one that does not contain the
slash () character. Any path name that includes one or more slashesdn be divided in two or more
different atoms.

Path name components are represented by struct compomensdgects (defined in
src/ sys/ sys/ namei . h), heavily used by several vnode operations. The followirgs most
important fields:

- cn_fl ags: A bitfield that describes the element. Of special intereh&HASBUF flag, which
indicates that this object holds a valid path name buffez {eecn_pnbuf field below).

- cn_pnbuf : A pointer to the buffer holding the complete path name. Thenly valid if the
cn_f 1 ags bitfield has theHASBUF flag.

In most situations, this buffer is automatically allocasetl deallocated by the system, but this is not
always true. Sometimes, it is necessary to free it in someeofhode operations themselves;
vnodeops(9) gives more details about this.

- cn_namept r: A pointer withincn_pnbuf that specifies the start of the path name component
described by this object. Muatwaysbe used in conjunction wittn_namel en.

- cn_nanel en: The length of this path name component, startingnathanept r .

2.9.2 The lookup algorithm

To resolve a path namg@r tolookup a path nameneans to get a vnode that uniquely represents based
on a previously specified path name, be it absolute or relativ

The NetBSD kernel uses a two-level iterative algorithm sohee path names. The first level is file
system independent and is carried on by the namei(9) fumatibile the second one relies on internal
file system details and is achieved through the lookup vhpeeation.

The following list illustrates the lookup algorithm. Lot details have been left out from it to make
things simpler; namei(9) and vnodeops(9) contain all thesmg information:

XXX: <wrstuden> | think you simplified the description too atu You left out lookup(), and ascribe
certain actions to namei() when they are performed by loQkdfphile | like your attempt to keep it
simple, I think both namei() and lookup() need describingkiup() takes a path name and turnsi it into a
vnode, and namei() takes the result and handles symbdticdsolution.

XXX: <jmmv> | currently don’t know very much about the intexts of lookup() and namei(), so I've left
the simplified description in the document, temporarily.

1.namei constructs @np path name component (of type struct componentname as loedaéni
Section 2.9.}; its buffer holds the complete path name to look for. The ponent pointers are
adjusted to describe the path name’s first component.

21

Chapter 2 File system internals

2. Thenanei operation gets the vnode for the lookup’s starting poinwégk a directory). For
absolute path names, this is the root directory’s vnoderélative path names, it is the current
working directory’s vnode, as seen by the callling userlpratess.

This vnode is generally callatlp, standing fodirectory vnode pointer

3.nanei calls the vnode lookup operation on tthep vnode, telling it which is the component it has to
resolve ¢np) starting from the given directory.

4. If the component exists in the directory, the vnode looperation must return a vnode for its
respective entry.

However, if the component does not exist in the directoryJtokup will fail returning an
appropriate error code. There are several other error tondithat have to be reported, all of them
appropriately described in vnodeops(9).

5.nanei updatesivp to point to the returned vnode and advances to the next component, only if
there are more components to look for. In that case, the guveeontinues fror.

In case there are no more components to lookrfamei returns the vnode of the last entry it
located.

There are several reasons behind this two-level lookup argsim, but they have been left over for
simplicity. XXX: The 4.4BSD book gives them all; we shouldher link to it or explain these here in our
own words (preferably the latter).

2.9.3 Lookup hints

One of the arguments passed to the lookup algorithm is atmtspecifies the kind of lookup to
execute. This hint specifies whether the lookup is for a fiéation CREATE), a deletion DELETE) or a
name changeRENAME). The file system uses these hints to speed up the corresgpoypieration —
generally to cache some values that will be used while peicgshe real operation later on.

For example, consider the unlink(2) system call whose mep®to delete the given file name. This
operation issues a lookup to ensure that the file exists agetta vnode for it. This way, it is able to call
the vnode’s remove operation. So far, so good. Now, the tiperiself has to delete the file, but
removing a file means, among other things, detaching it fimrdirectory containing it. How can the
remove operation access the directory entry that point#uetéile being removed? Obviously, it can do
another lookup and traverse a potentially long directony.iB this really needed?

Remember that unlink(2) first got a vnode for the entry to meaeed. This implied doing a lookup,
which traversed the file’s parent directory looking for itgrg. The algorithm reached the entry once, so
there is no need to repeat the process once we are in the vpedaion itself.

In the above situation, the second lookup is avoided by cagdiie affected directory entry while the
lookup operation is executed. This is only done whenDHeETE hint is given.

The same situation arises with file creations (because ngieemay be overwrite previously deleted
entries in on-disk file systems) or name changes (becausgp#ration needs to modify the associated
directory entry).

22

Chapter 2 File system internals

2.10 File management

XXX: Write an introduction.

2.10.1 Creation of regular files

XXX: To be written. Describe vop_create.

2.10.2 Creation of hard links
XXX: To be written. Describe vop_link.

2.10.3 Removal of a file

XXX: To be written. Describe vop_remove.

2.10.4 Rename of a file

XXX: To be written. Describe vop_rename.

2.10.5 Reading and writing

vnodes have an operation to read data from thesp (r ead) and one to write data to them

(vop_wri t e) both called by their respective system calls, read(2) anite(2). The read operation
receives an offset from which the read starts, a number geaifies the number of bytes to read (length)
and a buffer into which the data will be stored. Similarly thrite operation receives an offset from
which the write starts, the number of bytes to write and adyffom which the data is read.

There is also the mmap(2) system call which maps a file into ongm@ind provides userland direct
access to the mapped memory region.

2.10.5.1 uio objects

The struct uio type describes a data transfer between tderelift buffers. One of them is stored within
the uio object while the other one is external (often livingiserland space). These objects are created
when a new data transfer starts and are alive until the &afiafshes completely; in other words, they
identify a specific transfer.

The following is a description of the most important fieldstruct uio (the ones needed for basic
understanding on how it works). For a complete list, see oiwe(D).

- ui o_of f set : The offset within the file from which the transfer startsthé transfer is a read, the
offset must be within the file size limits; if it is a write, iao extend beyond the end of the file — in
which case the file is extended.

« ui o_resid (also known as theesidual count Number of bytes remaining to be transferred for this
object.

23

Chapter 2 File system internals

« A set of pointers to buffers into/from which the data will Ead/written. These are not used directly
and hence their names have been left out.

+ Aflag that indicates if data should be read from or writterhte buffers described by the uio object.

This may be easier to understand by discussing a little elar@pnsider the following userland
program:

char buffer[1024];
| seek(fd, 100, SEEK SET);
read(fd, buffer, 1024);

The read(2) system call constructs an uio object contaiamgffset of 100 bytes and a residual count of
1024 bytes, making the uio’s buffers pointdof f er and marking them as the data’s target. If this was a
write operation, the uio object’s buffers could be the dasaiurce.

In order to simplify uio object management, the kernel pdegithe uiomove(9) function, whose
signature is:

int uionmove(void *buf, size_tn, struct uio *uio);

This function copies up to bytes between the kernel buffer pointed today into the addresses
described by thei o instance. If the transfer is successful, the uio object datgd so thati o_resi d
is decremented by the amount of data copigd, of f set is increased by the same amount and the
internal buffer pointers are updated accordingly. Thieeasllingui onove repeatedly (e.g., from
within a loop) until the transfer is complete.

2.10.5.2 Getting and putting pages

As seen irSection 2.10.5,1data transfers are described by a high-level object thed dot take into
account any detail of the underlying file system. More spealiff, they are not tied to any specific

on-disk block organization. (Remember that most on-digkdjlstems store data scattered across the disk
(due to fragmentation); therefore, the transfers have tarbken up into pieces to read or write the data
from the appropriate disk blocks.)

Breaking the transfer into pieces, requesting them to thleaid handling the results is a (very) complex
operation. Fortunately, the UVYM memory subsystem Seetion 1.) simplifies the whole task. Each
vnode has a struct uvm_object (as describeSiention 1.1.1lassociated to it, backed by a vnode.

The vnode backs up the uobj throughvitsp_get pages andvop_put pages operations. As these two
operations are very generic (from the point of view of mangghemory pages), genfs provides two
generic functions to implement them. Theseg#ef s_get pages andgenf s_put pages, which will
usually suit the needs of any on-disk file system. How theywé#h specific file system details is
something detailed i8ection 2.10.5.5

2.10.5.3 Memory-mapping a file

Thanks to the particular UBC implementation in NetBSD (Seetion 2.10.5)2 a file can be trivially
mapped into memory. The mmap(2) system call is used to aeliés and the kernel handles it

24

Chapter 2 File system internals

independently from the file system.

XXX: Should describe where mmap is really handled.

2.10.5.4 The read and write operations

Thanks to the particular UBC implementation in NetBSD (Seetion 2.10.5)2 the vnode’s read and
write operationsyop_r ead andvop_wr i t e respectively) are very simple because they only deal with
virtual memory. Basically, all they need to do is memory-rttepaffected part of the file and then issue a
simple memory copy operation.

As an example, consider the following sample read code:

i nt

egf s_read(void *v)

{
struct vnode x*vp = ((struct vop_read_args =*)v)->a_vp;
struct uio *uio = ((struct vop_read_args *)Vv)->a_uio;

int error;
struct egfs_node *node;

node = (struct egfs_node *)vp->v_dat a;

if (uio->uio_offset < 0)
return ElI NVAL;

if (uio->uio_resid == 0 || uio->uio_offset >= node->en_size)
return O;

if (vp->v_type == VREG {

error = 0;

while (uio->uio_resid > 0 & error == 0) {
int flags;
off t len;
voi d *w n;

len = M N(ui o->ui o_resid, node->en_size -
ui o->ui o_offset);
if (len == 0)
br eak;

win = ubc_al | oc(&vp->v_uobj, uio->uio_offset,
& en, UBC_READ);

error = uionove(win, len, uio);

flags = UBC _WANT_UNMAP(vp) ? UBC_UNMAP : O;

ubc_rel ease(win, flags);

}

} else {
left out for sinplicity (if needed)

}

return error,;

25

Chapter 2 File system internals

2.10.5.5 Reading and writing pages

As seen irSection 2.10.5.2hegenf s_get pages andgenf s_put pages functions are enough for
most on-disk file systems. But if they are abstract, how dg tieal with the specific details of each file
system? E.g., if the system wants to fetch the third pageedfftbo/ bar file, how does it know which
on-disk blocks needs it read to bring the requested page teany® Where does the real transfer take
place?

The mapping between memory pages and disk blocks is doneehwntide’s bmap operation,
vop_bmap, called by the paging functions. This receives the file’sdabblock number to be accessed
and converts it to the internal, file system specific block ham

Once bmap returns the physical block number to be acce$sedeneric page handling functions check
whether the block is already in memory or not. If it is not,asfer is done by using the vnode’s strategy
operationyop_strat egy).

More information about these operations can be found in tleglgops(9) manual page.

2.10.6 Attributes management

Within the NetBSD kernel, a file has a set of standard and lwedlan attributes associated to it. These
are:

- Atype: specifies whether the file is a regular flREG), a directory ¥DI R), a symbolic link YLNK), a
special device\([CHR or VBLK), a named pipeMF! FO) or a socketYSOCK). The constants mentioned
here are the vnode types, which do not necessarily matchtheal type representation of a file
within a file system.

- An ownership: that is, a user id and a group id.
+ An access mode.

- A set of flags: these include the immutable flag, the appemyflag, the archived flag, the opaque
flag and the nodump flag. See chflags(2) for more information.

- A hard link count.

- A set of times: these include the birth time, the change ttheaccess time and the modification time.
SeeSection 2.10.Tor more details.

- Asize: the exact size of the file, in bytes.
- A device number: in case of a special device (character eklbaes), its number is also stored.

The NetBSD kernel uses the struct vattr type (detailed itr(@) to handle all these attributes all in a
compact way. Based on this set, each file system typicallp@tpthese attributes in its node
representation structure (unless they are ficticious akebfavhen accessed). For example, FFS could
store them in inodes, while FAT could save only some of thethfake the others at run time (such as
the ownership).

26

Chapter 2 File system internals

A struct vattr instance is initialized by using ti&TTR_NULL macro, which sets its vnode type\WsioN
and all of its other fields t¥NOVAL, indicating that they have no valid values. After using thiscro, it

is the responsibility of the caller to set all the fields it w&ato the correct values. The consumer of the
object shall not use those fields whose value is UNggIMAL).

It is interesting to note that there are no vnode operatioaisrhatch the regular system calls used to set
the file ownership, its mode, etc. Instead, nodes providespperations that act on the whole attribute set:
vop_get attrs to read them andop_set at t r s to set them. The rest of this section describes them.

2.10.6.1 Getting file attributes

Thevop_get att r vnode operation fetches all the standard attributes fromeng/node. All it does is
fill the givenst ruct vattr structure with the correct values. For example:

i nt

egfs_getattr(void *v)

{
struct vnode x*vp = ((struct vop_getattr_args *)v)->a_vp;
struct vattr x*vap = ((struct vop_getattr_args *)v)->a_vap;

struct egfs_node *node;
node = (struct egfs_node *)vp->v_data;
VATTR_NULL(vap);

swi tch (node->en_type) {

case EGFS_NODE DI R:
vap->va_type = VDI R;
br eak;

case ...:

}
vap- >va_node = node->en_node;
vap->va_ui d = node->en_ui d;
vap->va_gi d = node->en_gi d;
vap->va_nl i nk = node->en_nli nk;
vap->va_flags = node->en_fI ags;
vap->va_si ze = node->en_si ze;
continue filling values ...

return O;

2.10.6.2 Setting file attributes

Similarly to thevop_get at t r operationyop_set att r sets a subset of file attributes at once. Only
those attributes which are n@ghNOVAL are changed. Furthermore, the operation ensures thatlteeisa
not trying to set unsettable values; for example, one casetdi.e., change) the file type.

27

Chapter 2 File system internals

Of special interest is that the file’s size can be changed astidbute. In other words, this operation is
the entry point for file truncation calls and it is its respibilgy to call vop_t r uncat e when
appropriate. The system never calls the vnode’s truncaeatipn directly.

A little sketch:

i nt
egfs_setattr(void *v)
{
struct vnode *vp = ((struct vop_setattr_args *)v)->a_vp;
struct vattr *vap = ((struct vop_setattr_args *)v)->a_vap;
struct ucred *cred = ((struct vop_setattr_args *)v)->a_cred;
struct proc *p = ((struct vop_setattr_args *)v)->a_p;
/+ Do not allow setting unsettable values. */
if (vap->va_type !'= VNON || vap->va_nlink !'= VNOVAL || ...)
return ElI NVAL,
if (vap->va_flags != VNOVAL) {
set node flags here ...
if error, returnit
}
if (vap->va_size != VNOVAL) {
verify file type ...
error = VOP_TRUNCATE(vp, size, 0, cred, p);
if error, return it
}
etcetera ...
return O;
}

2.10.7 Time management

Each node has four times associated to it, all of them reptedédy struct timespec objects. These times
are:

- Birth time: the time the file was born. Cannot be changed #fiefile is created.
- Access time: the time the file was last accessed.

- Change time: the time the file’s node was last changed. Fonpbe if a new hard link for an existing
file is created, its change time is updated.

- Modification time: the time the file’'s contents were last nfiedi.

Given that these times reflect the last accesses to the yimdgiiles, they need to be modified extremely
often. If this was done synchronously, it could impose a l@ggrmance penalty on files accessed
repeatedly. This is why time updates are done in a delayedenan

28

Chapter 2 File system internals

Nodes usually have a set of flags (which are only kept in mepmener written to disk) that indicate

their status to let asynchronoous actions know what to desé&lflags are used, among other things, to
indicate that a file’s times have to be updated. They are ssi@sas the file is changed but the times are
not really modified until the vnode’s update operatiead_updat e) is called; see vnodeops(9) for more
details on this.

vop_updat e is called asynchronously by the kernel from time to time. Ideer, a file system may opt
to execute it on purpose as it whishes; such a situation mayhke it is mounted synchronously, as it
will be updating the times as soon as the changes happen.

2.10.8 Access control

The file system is in charge of ensuring that a request is @alitht, permission-wise. This is done with
the vnode’s access operatiorop_access), which receives the caller’s credentials and the reqdeste
access mode. The operation then checks if these are coepaitib the current attributes of the file
being accessed.

The operation generally follows this structure:

1. If the file system is mounted read only, and the caller wantgrite to a directory, to a link or to a
regular file, then access must be denied.

2. If the file is immutable and the caller wants to write to dcass is denied.

3. At last, vaccess(9) is used to check all remaining acoessilglites. This simplifies a lot the code of
this operation.

For example:

i nt
egf s_access(void *v)
{
struct vnode *vp = ((struct vop_access_args *)Vv)->a_vp;
int node = ((struct vop_access_args *)v)->a_node;
struct ucred *cred = ((struct vop_access_args *)v)->a_cred;

struct egfs_node *node;
node = (struct egfs_node *)vp->v_data;
if (vp->v_type == VDIR || vp->v_type == VLNK || vp->v_type == VREG
if (mode & W\RRI TE &&
vp->v_nount->mt _flag & MNT_RDONLY)

return ERCFS;
}

if (nmode & WRI TE && mode->tn_flags & | MMUTABLE)
return EPERM

return vaccess(vp->v_type, node->en_node, node->en_uid,
node- >en_gi d, node, cred);

29

Chapter 2 File system internals

2.11 Symbolic link management

2.11.1 Creation of symbolic links

XXX: To be written. Describe vop_symlink.

2.11.2 Read of symbolic link’s contents

XXX: To be written. Describe vop_readlink.

2.12 Directory management

A directory maps file names to file system nodes. The inteembksentation of a directory depends
heavily on the file system, but the vnode layer provides atrattsvay to access them. This includes the
vop_| ookup, vop_nkdi r,vop_rndi r andvop_r eaddi r operations.

For the rest of this section, assume that the following singiruct egfs_dirent describes a directory
entry:

struct egfs_dirent {
char ed_name[MAXNAMLEN] ;
i nt ed_nanel en;
off t ed fileid;

2.12.1 Creation of directories
XXX: To be written. Describe vop_mkdir.

2.12.2 Removal of directories

XXX: To be written. Describe vop_rmdir.

2.12.3 Reading directories

Thevop_r eaddi r operation reads the contents of directory in a file systerapeddent way.
Remember that the regular read operation can also be ustdd@urpose, though all it returns is the
exact contents of the directory; this cannot be used by progtthat aim to be portable (not to mention
that some file systems do not support this functionality).

This operation returns a struct dirent object (as seen antl{p)) for each directory entry it reads from
the offset it was given up to that offset plus the transfegtbnBecause it must read entire objects, the
offset must always be aligned to a physical directory entyrtdlary; otherwise, the function shall return
an error. This is not always true, though: some file systers thariable-sized entries and they use
another metric to determine which entry to read (such agdtsring index).

30

Chapter 2 File system internals

It is important to note that the size of the resulting strutt objects is variable: it depends on the name
stored in them. Therefore, the code first constructs thejgetst(settings all its fields by hand) and then
uses the DI RENT_SI ZE macro to calculate its size, later assigned todheec! en field. For example:

struct egfs_dirent de;
struct egfs_node *node;
struct dirent d;

read a directory entry fromdisk into de ...
make node point to the de.ed fileid node ...

swi tch (node->ed_type) {
case EG-FS NODE DI R:

d.d_type = DT_D R,
case ...:

d.d _nanml en = de. ed_nanel en;

(voi d) nencpy(d. d_nanme, de.ed_nane, de.ed_nanel en);
d.d_nane[de. ed_nanelen] = '\0";

d.d_reclen = _DI RENT_SI ZE(&d) ;

With this in mind, the operation also ensures that the offsebrrect, locates the first entry to return and
loops until it has exhausted the transmission’s length.fohewing illustrates the process:

int

egf s_readdir(void *v)

{
struct vnode x*vp = ((struct vop_readdir_args *)v)->a_vp;
struct uio *uio = ((struct vop_readdir_args *)v)->a_uio;
int reofflag = ((struct vop_readdir_args *)v)->a_eoffl ag;

int entry_counter;

int error;

of f_t startoff;

struct egfs_dirent de;
struct egfs_node *dnode;
struct egfs_node *node;

if (vp->v_type != VD R)
return ENOTDI R;

if (uio->uio_offset % sizeof(struct egfs_dirent) > 0)
return ElI NVAL;

dnode = (struct egfs_node *)vp->v_data;

read the first directory entry into de ...
make node point to the de.ed_fileid node ...

entry_counter = 0;
startoff = uio->uio offset;

31

Chapter 2 File system internals

do {
struct dirent d;

construct d fromde ...
error = uionove(&d, d.d_reclen, uio);

entry_counter ++;
read the next directory entry into de ..
make node point to the de.ed fileid node ...
} while (error == 0 & uio->uio_resid >0
&& de is valid)

[+ lnportant: Update transfer offset to match on-di sk
* directory entries, not virtual ones. */
ui o->uio_offset = entry_counter * sizeof(egfs_dirent);

if (eofflag !'= NULL)
+eofflag = (de is invalid?);

return error;

}

File systems that support NFS take some extra steps in thisifun. See vnodeops(9) for more details.
XXX: Cookies and the eof flag should really be explained here.

2.13 Special nodes

File system that support named pipes and/or special demiiement the vnode’s mknod operation
(vop_nknod) in order to create them. This is extremely similavtgp_cr eat e. However, it takes some
extra steps because named pipes and special devices aikeemegllar files: their contents are not
stored in the file system and they have specific access mefthioeiefore, they cannot use the file
system’s regular vnode operations vector.

In other words: the file system defines two additional vnoderations vectors: one for named pipes and
one for special devices. Fortunately, this taks is easyusecthe virtual fifofs

(src/sys/ mscfs/fifofs)andspecfsqrc/sys/ m scfs/specfs) file systems provide generic
vnode operations. In general, these vectors use all theigenperations except for a few functions.

Because the on-disk file system has to update the node’s wmes accessing these special files, some
operations are implemented on a file system basis and ldt¢hegeneric operations implemented in
fifofs and specfs. This basically means that those file systemlement their owmop_cl ose,

vop_read andvop_wr i t e operations for named pipes and for special devices.

As a little example of such an operation:
int
egfs_fifo_read(void *v)

{

struct vnode x*vp = ((struct vop_read_args *)v)->a_vp

32

Chapter 2 File system internals

((struct egfs_node *)vp->v_data)->tn_status | = TMPFS_NODE_ACCESSED;
return VOCALL(fifo_vnodeop_p, VOFFSET(vop_read), Vv);
}

Remember that these two additional operations vectorstatedeto the vnode operations description
structure; otherwise, they will are not initialized andréfere will not work. Se&ection 2.2.3

For more sample code, conssiitc/ sys/ f s/t mpfs/fifofs_vnops.c,
src/sys/fs/tnpfs/fifofs_vnops.h,src/sys/fs/tnpfs/specfs_vnops. cand
src/ sys/ fs/tnpfs/specfs_vnops. h.

2.14 NFS support

XXX: To be written. Describe vop_fhtovp and vfs_vptofh.

2.15 Step by step file system writing

1. Create thar c/ sys/ f s/ egf s directory.

2. Create a minimalrc/ sys/ fs/ egfs/fil es. egf s file:

deffs fs_egfs.h EGFS
file fs/egfs/egfs_vfsops.c egfs
file fs/egfs/egfs_vnops.c egfs

3. Modify src/ sys/ conf/fil estoincludefil es. egf s. l.e., add the following line:
include "fs/egfs/files.egfs"

4. Define the file system’s namesmnc/ sys/ sys/ nount . h. l.e., add the following line:
#defi ne MOUNT_EGFS "egfs"

5. Define the file system’s vnode tag type.
SeeSection 2.7.2

6. Add the file system’s magic number in the Linux compatipilayer,
src/ sys/ conpat/|inux/comon/linux_m sc. cand
src/ sys/ conpat /| i nux/ common/ | i nux_ni sc. h, if applicable. Fallback to the default number
if there is nothing appropriate for the file system.

7. Create a minimalr c/ sys/ f s/ egf s/ egf s_vnops. c file that contains stubs for all vnode
operations.

#i ncl ude <sys/cdefs. h>
__KERNEL_RCSI D(0, "$NetBSD: chap-file-systemxni,v 1.1 2006/01/28 09:34:18 jmmv Exp $

#i ncl ude <sys/param h>
#i ncl ude <sys/vnode. h>

#i ncl ude <m scfs/genfs/genfs. h>

33

Chapter 2 File system internals

#define egfs_| ookup genfs_eopnot supp
#define egfs_create genfs_eopnot supp
#defi ne egfs_nknod genfs_eopnot supp
#defi ne egfs_open genfs_eopnot supp
#define egfs_cl ose genfs_eopnot supp
#define egfs_access genfs_eopnot supp
#define egfs_getattr genfs_eopnotsupp
#define egfs_setattr genfs_eopnotsupp
#define egfs_read genfs_eopnot supp
#define egfs_wite genfs_eopnotsupp
#define egfs_fcntl genfs_eopnotsupp
#define egfs_ioctl genfs_eopnotsupp
#define egfs_poll genfs_eopnot supp
#define egfs_kqgfilter genfs_eopnotsupp
#define egfs_revoke genfs_eopnot supp
#defi ne egfs_mmap genfs_eopnot supp
#define egfs_fsync genfs_eopnotsupp
#defi ne egfs_seek genfs_eopnot supp
#define egfs_renove genfs_eopnot supp
#define egfs_link genfs_eopnot supp
#defi ne egfs_renane genfs_eopnot supp
#define egfs_nkdir genfs_eopnotsupp
#define egfs_rndir genfs_eopnotsupp
#define egfs_synlink genfs_eopnotsupp
#define egfs_readdir genfs_eopnotsupp
#define egfs_readlink genfs_eopnotsupp
#define egfs_abortop genfs_eopnot supp
#define egfs_inactive genfs_eopnot supp
#define egfs_reclai mgenfs_eopnot supp
#define egfs_|l ock genfs_eopnot supp
#define egfs_unl ock genfs_eopnot supp
#defi ne egfs_bmap genfs_eopnot supp
#define egfs_strategy genfs_eopnot supp
#define egfs_print genfs_eopnotsupp
#defi ne egfs_pat hconf genfs_eopnot supp
#define egfs_i sl ocked genfs_eopnot supp
#defi ne egfs_advl ock genfs_eopnot supp
#define egfs_bl kat of f genfs_eopnot supp
#define egfs_vall oc genfs_eopnot supp
#define egfs_reall ocbl ks genfs_eopnot supp
#define egfs_vfree genfs_eopnotsupp
#define egfs_truncate genfs_eopnot supp
#defi ne egfs_update genfs_eopnot supp
#define egfs_bwite genfs_eopnotsupp
#define egfs_get pages genfs_eopnot supp
#defi ne egfs_put pages genfs_eopnot supp

int (*+xegfs_vnodeop_p)(void *);
const struct vnodeopv_entry_desc egfs_vnodeop_entries[] = {
{ &vop_default_desc, vn_default_error },
{ &vop_l ookup_desc, egfs_Ilookup },
{ &vop_create_desc, egfs_create },
{ &vop_nknod_desc, egfs_nknod },

34

Chapter 2 File system internals

&vop_open_desc, egfs_open },

&vop_cl ose_desc, egfs_close },
&vop_access_desc, egfs_access },
&op_getattr_desc, egfs_getattr },
&vop_setattr_desc, egfs_setattr },
&vop_read_desc, egfs_read },
&op_write_desc, egfs wite },
&op_ioctl _desc, egfs_ioctl },
&op_fentl _desc, egfs_fentl },
&op_pol | _desc, egfs_poll },
&op_kqgfilter_desc, egfs_kqgfilter },
&vop_revoke_desc, egfs_revoke },
&op_nmap_desc, egfs_nmap },
&op_fsync_desc, egfs_fsync },
&vop_seek_desc, egfs_seek },
&vop_renove_desc, egfs_remove },
&op_link_desc, egfs_link },
&vop_renane_desc, egfs_renane },
&op_nkdir_desc, egfs_nkdir },
&op_rndir_desc, egfs_rmdir },
&op_sym ink_desc, egfs_symink },
&vop_readdir_desc, egfs_readdir },
&vop_readlink_desc, egfs_readlink },
&vop_abortop_desc, egfs_abortop },
&vop_inactive_desc, egfs_inactive },
&vop_reclai mdesc, egfs_reclaim},
&vop_l ock_desc, egfs_lock },
&vop_unl ock_desc, egfs_unlock },
&op_bmap_desc, egfs_bmap },
&vop_strategy_desc, egfs_strategy },
&op_print_desc, egfs_print },
&vop_i sl ocked_desc, egfs_islocked },
&vop_pat hconf _desc, egfs_pathconf },
&vop_advl ock_desc, egfs_advl ock },
&vop_bl kat of f _desc, egfs_bl katoff },
&vop_val | oc_desc, egfs_valloc },
&vop_real | ocbl ks_desc, egfs_reallochl ks },
&op_vfree_desc, egfs_vfree },
&vop_truncate_desc, egfs_truncate },
&vop_updat e_desc, egfs_update },
&op_bwite_desc, egfs_bwite },
&vop_get pages_desc, egfs_get pages },
&vop_put pages_desc, egfs_putpages },
NULL, NULL }

et Nt W W e I N e W et B e N et M W e B e e i e Nt e M et W et W e R R e i e B e R)

b
const struct vnodeopv_desc egfs_vnodeop_opv_desc =
{ &egfs_vnodeop_p, egfs_vnodeop_entries };

8. Create a minimadr c/ sys/ f s/ egf s/ egf s_vf sops. c file that contains stubs for all VFS
operations.

#i ncl ude <sys/cdefs. h>
__KERNEL_RCSI D(0, "$NetBSD: chap-file-systemxnl,v 1.1 2006/01/28 09:34:18 jmmv Exp $

35

Chapter 2 File system internals

#i ncl ude <sys/param h>
#i ncl ude <sys/nmount. h>

static int egfs_nount(struct nount *, const char *, void =*,
struct naneidata *, struct proc x);

static int egfs_start(struct nount *, int, struct proc *);

static int egfs_unnmount(struct nmount *, int, struct proc x);

static int egfs_root(struct mount *, struct vnode =*x*);

static int egfs_quotactl (struct mount =, int, uid_t, void =,
struct proc *);

static int egfs_vget(struct nount *, ino_t, struct vnode =*x*);

static int egfs_fhtovp(struct nmount *, struct fid *, struct vnode *x);
static int egfs_vptofh(struct vnode *, struct fid *);

static int egfs_statvfs(struct nount %, struct statvfs *, struct proc *);
static int egfs_sync(struct nmount =*, int, struct ucred *, struct proc *);
static void egfs_init(void);

static void egfs_done(void);

static int egfs_checkexp(struct mount =*, struct nbuf =, int =x,
struct ucred *x);

static int egfs_snapshot(struct mount =*, struct vnode =*,
struct tinespec *);

extern const struct vnodeopv_desc egfs_vnodeop_opv_desc;

const struct vnodeopv_desc * const egfs_vnodeopv_descs[] = {
&egfs_vnodeop_opv_desc,
NULL,

S

struct vfsops egfs_vfsops = {

MOUNT_EGFS,
egf s_mount
egfs_start,
egf s_unmount ,
egfs_root,

egf s_quot act |,
egf s_statvfs,
egf s_sync,

egf s_vget,
egfs_fhtovp,
egf s_vpt of h,

egfs_init,
NULL, /* vfs_reinit: not yet (optional) =*/
egf s_done,

NULL, /* vfs_wassysctl: deprecated */

NULL, /* vfs_nountroot: not yet (optional) =/

egf s_checkexp

egf s_snapshot ,

vfs_stdextattrctl,

egf s_vnodeopv_descs
N
VFS_ATTACH(egf s_vf sops) ;

36

Chapter 2 File system internals

static int
egf s_nmount (struct nount *np, const char *path, void *data,
struct nanei data *ndp, struct proc =*p)

{

return EOPNOTSUPP;
}

static int
egf s_start(struct nount *np, int, struct proc *p)

{

return EOPNOTSUPP;
}

static int
egf s_unmount (struct nount *np, int, struct proc *p)

{
return EOPNOTSUPP;
}
static int
egf s_root (struct mount *np, struct vnode **vpp)
{
return EOPNOTSUPP;
}
static int

egf s_quotact! (struct mount *np, int cnd, uid_t uid, void *arg,
struct proc *p)

{

ret urn EOPNOTSUPP;
}

static int
egf s_vget (struct mount *np, ino_t ino, struct vnode *xvpp)

{

ret urn EOPNOTSUPP;
}

static int
egf s_fhtovp(struct mount *np, struct fid xfhp, struct vnode *xvpp)

{

ret urn EOPNOTSUPP;
}

static int
egf s_vptof h(struct vnode *np, struct fid =fhp)

37

Chapter 2 File system internals

ret urn EOPNOTSUPP;
}

static int
egf s_statvfs(struct nmount *np, struct statvfs *sbp, struct proc *p)

{

return EOPNOTSUPP;
}

static int
egf s_sync(struct mount *np, int waitfor, struct ucred *uc, struct proc *p)

{

ret urn EOPNOTSUPP;
}

static void
egfs_init(void)
{

ret urn EOPNOTSUPP;
}

static void
egf s_done(voi d)

{

ret urn EOPNOTSUPP;
}

static int
egf s_checkexp(struct mount *np, struct nmbuf *nb, int * wh,
struct ucred x*anon)

{

return EOPNOTSUPP;
}
static int

egf s_snapshot (struct nmount =*np, struct vnode *vp, struct tinmespec *ctine)

{

return EOPNOTSUPP;
}

. Define a new malloc type for the file system and modifyebes_i ni t andegf s_done hooks to
attach and detach it in the LKM case.

SeeSection 2.4

38

Chapter 2 File system internals

10. Create ther c/ sys/ f s/ egf s/ egf s. h file, that will define all the structures needed for our file
system.

#if !defined(_EGFS_H)

define EGFS H_

#el se

error "egfs.h cannot be included nmultiple tines."
#endi f

#if defined(KERNEL)

struct egfs_nount {

b

struct egfs_node {

b

#endi f /+ defined(_KERNEL) */
#defi ne EGFS_ARGSVERS| ON 1

struct egfs_args {
char rea_f spec;

int ea_version;

1

11. Create ther c/ shi n/ nount _egf s directory.

12. Create a simpler c/ sbi n/ mount _egf s/ Makefi | e file:
.include <bsd. own. nk>
PROG= nmount _egfs

SRCS= nount _egfs.c
MAN= mount _egfs. 8

CPPFLAGS+= - | ${ NETBSDSRCDI R}/ sys
WARNS= 4
.include <bsd. prog. nk>

13. Create a simpler ¢/ sbi n/ mount _egf s/ nount _egf s. ¢ program that calls the mount(2) system
call.

XXX: Add an example or link to the corresponding section.

14. Create an emp#yr ¢/ sbi n/ mount _egf s/ mount _egf s. 8 manual page. Details left out from this
guide.

15. Fill in theegf s_nount andegfs_unnount functions.

SeeSection 2.5

39

Chapter 2 File system internals

16. Fill in theegf s_st at vf s function. Return correct data if possible at this point @vkeit for a later
step.

17. Set thevop_f sync, vop_bwri t e andvop_put pages operations tgenf s_nul | op. These need
to be defined and return successfully to avoid crashes dayimg(2) and mount(2). We will fill them
in at a later stage.

18. Set thevop_abor t op operation tagenf s_abor t op.

19. Set the locking operations¢enf s_| ock, genfs_unl ock andgenf s_i sl ocked. You will most
likely need locking, so it is better if you get it right frometbeginning.

SeeSection 2.7.5
20. Implementtheop_r ecl ai mandvop_i nact i ve operations to correctly destroy vnodes.
SeeSection 2.7.4

21. Fill'in theegf s_sync function. In case you do not know what do put in it, just retsuecess
(zero); otherwise, serious problems will arise becausdlib& impossible for the operating system
to flush your file system.

22. Fillin theegf s_r oot function. Assuming you already read the file system’s roakeoom disk (or
whichever backing store you use) and have it in memory, siralibcate and lock a vnode for it.

SeeSection 2.7.3

i nt
egf s_root (struct mount *np, struct vnode **vpp)
{
return egfs_alloc_vp(np, ((struct egfs_nmount *)np)->emroot, vpp);
}

23. Improve the mount utility to support standard optioree(getmntopts(3)) and possibly some file
system specific options too.

24. Implement thegf s_get at t r andegf s_set at t r functions operations. As a side effect,
implementegf s_updat e andegf s_sync too. For the latter, you only need an stub that returns
success for now.

SeeSection 2.10.6
25. Implement thegf s_access operation.
SeeSection 2.10.8

26. Implement thegf s_pri nt function. This is trivial, as all it has to do is dump vnodedmhation
(its attributes, mostly) on screen, but it will help with dejging.

SeeSection 2.10.8

27. Implement a simplegf s_| ookup function that can locate any given file; be careful to conform
with the locking protocol described in vnodeops(9), as plaid is really tricky. At this point, you can
forget about the lookup hint€REATE, DELETE or RENANME); you will add them when needed.

SeeSection 2.9

28. Implement thegf s_open function. In the general case, this one only needs to verdy the open
mode is correct against the file flags.

40

Chapter 2 File system internals

i nt
egf s_open(void *v)
{
struct vnode *vp = ((struct vop_open_args *)v)->a_vp;
int node = ((struct vop_open_args *)V)->a_node;
struct egfs_node *node;
node = (struct egfs_node *)vp->v_data;
if (node->en_flags & APPEND &&
node & (FWRITE | O _APPEND)) == FWRI TE)
return EPERM
return O;
}

29. Implement thegf s_cl ose function. In the general case, this one needs to do nothidg as
returning success.

30. Implement thegf s_r eaddi r operation so that you can start interacting with your fileeys
After you add this function, you should be able to list anyediory in it, and check that the files’
attributes are shown correctly. And most likely, you wikgtseeing bugs ;-)

SeeSection 2.12.3

31. Implement thegf s_nkdi r operation. You may need to modify tlegf s_| ookup function to
honour theCREATE hint.

SeeSection 2.9.3

32. Implement thegf s_r ndi r operation. You may need to modify tlegf s_| ookup function to
honour theDELETE hint. Note that adding an operation that removes stuff frioetfile system is

tricky; problems will certainly pop up if you have got bugsyiour vnode allocation code or in the
egf s_i nactive oregfs_recl ai mfunctions.

SeeSection 2.9.&ndSection 2.7.4
33. Implement thegf s_cr eat e operation to create regular filegREG) and local socketsvSOCK) .
34. Implement thegf s_r enove operation to delete files.

35. Implement thegf s_I i nk operation to create hard links. Be sure to control the filaiglHink
count correctly.

36. Implement thegf s_r enanme operation. This one may seem complex due to the amount of
arguments it takes, but it is not so difficult to implemenstkeep in mind that it has to manage
renames as well as moves and in which situation they happen.

37. Implement thegf s_r ead andegf s_wri t e operations. These are quite simple thanks to the
indirection provided by the vnode’s UVM object.

SeeSection 2.10.5

38. Redirect thegf s_get pages andegf s_put pages to genf s_get pages andgenfs_put pages
respectively. Should be enough for most file systems.

SeeSection 2.10.5.2

41

Notes

Chapter 2 File system internals

39. Implement thegf s_bmap andegf s_st r at egy operations.
SeeSection 2.10.5.5
40. Implement thegf s_t r uncat e operation.

41. Redirectthegfs_fcntl,egfs_ioctl,egfs_pol|,egfs_revoke andegfs_mrap operations
to their corresponding ones in genfs. Should be enough fet+filesystems; note that even FFS
does this.

42. Implement thegf s_pat hconf operation. This one is trivial, although the documentaiion
pathconf(2) and vhodeops(9) is a bit inconsistent.
int
egf s_pat hconf (void *v)

{

int nane = ((struct vop_pathconf_args *)v)->a_nane;
register_t *retval = ((struct vop_pathconf_args *)v)->a_ retval;

int error;

switch (name) {

case _PC LI NK_MAX:
xretval = LI NK_MAX;
br eak;

case ...:

return O;
}
43. Implement thegf s_sym i nk andegf s_r eadl i nk operations to manage symbolic links.
SeeSection 2.11
44. Implement thegf s_nknod operation, which adds support for named pipes and speciadate
SeeSection 2.13

45. Add NFS support. This basically means implementingtifes_vpt of h, egf s_checkexp and
egf s_f ht ovp VFS operations.

SeeSection 2.14

1. Technically speaking, a mount point needn’t be a dirgcasryou can NFS-mount regular files; the
mount point could be a regular file, but this restriction ilmerately imposed because otherwise, the

system could run out of name space quickly.

42

Chapter 3
Regression testing

Regression testing is an important part of software devetg. Unfortunately, NetBSD does not have a
consistent regression testing framework. Each subsysééimed its own set of tests in whichever form it
wishes to stress test itself.

This chapter provides some guidelines on how to test diftgwarts of the system, but please do keep in
mind that the whole regression testing framework ought teeptaced with something better.

XXX: This chapter is extremely incomplete. It currently ¢aims supporting documentation for
Chapter 2out nothing else.

3.1 Testing file systems

Testing file systems this is specially important becausgwwrk within kernel space; any unexpected
failure is often fatal and renders the whole system unusaélide, because there are literally hunderds of
minor details to test, none of them should suffer regression

The tests for a given file system are stored inside a directanyed after it, placed under

src/ regress/ sys/ fs/.Forexample, the tmpfs test suite livessinc/ r egr ess/ sys/ fs/ t npfs/.
Generally, this directory is accompanied byekef i | e whoser egr ess targets executes all the tests
automatically.

The author of this text suggests you to add individual anépeehdent tests for each feature you want to
check, and within these, add as many subtests as you neesliee¢hat the whole feature works. For
example, if you wanted to verify the mkdir vnode operatiomyd write at _nkdi r script that checks its
functionality through the mkdir(1) command. This scriptittbcheck that directories can be created, that
they cannot be overwritten, that their link count is updatedectly, etc.

tmpfs comes with a good set of generic tests that can be réoisether file systems.

43

Appendix A.
Acknowledgements

A.1 Authors

« Julio M. Merino Vidal (../../People/Pages/jmmv.html) wgenost ofChapter 2and small bits of
Chapter landChapter 3These chapters were the foundation of this book.

The initial versions of these chapters were as part of théfndpvelopment, possible thanks to
Google (http://www.google.com/)’s Summer of Code (httmde.google.com/summerofcode.html)
2005 program.

Thanks also go to William Studenmund for reviewi@bapter 2and providing multiple valuable
suggestions.

A.2 License
Copyright (c) 2005, 2006 The NetBSD Foundation, Inc. Alhtigreserved.

Redistribution and use in source and binary forms, with @aheut modification, are permitted provided
that the following conditions are met:

- Redistributions of source code must retain the above cgpinotice, this list of conditions and the
following disclaimer.

- Redistributions in binary form must reproduce the aboveydght notice, this list of conditions and
the following disclaimer in the documentation and/or otimaterials provided with the distribution.

- All advertising materials mentioning features or use o goftware must display the following
acknowledgement:

This product includes software developed by the NetBSD Hatian, Inc. and its contributors.

+ Neither the name of The NetBSD Foundation nor the names obitfributors may be used to endorse
or promote products derived from this software without gjieprior written permission.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AN@ONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUO NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FONDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTA, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USET®/OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORYFLIABILITY,

44

Appendix A. Acknowledgements

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWAREEVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

45

Appendix B.
Bibliography

Bibliography

[4.4BSD] Marshall Kirk McKusick, Keith Bostic, Michael J.ad¢els, John S. Quarterman, 1996,
0201549794, Addison-Wesley Professioffdle Design and Implementation of the 4.4 BSD
Operating System

46

	NetBSD Internals
	Table of Contents
	List of Tables
	
	Purpose of this book
	Chapter 1
	Memory management
	1.1 The UVM virtual memory manager
	1.1.1 UVM objects
	1.2 Managing wired memory
	1.2.1 Malloc types

	Chapter 2
	File system internals
	2.1 vnode layer overview
	2.1.1 The vnode data field
	2.1.2 vnode operations
	2.1.3 The vnode operations vector
	2.1.4 Executing vnode opearations

	2.2 VFS layer overview
	2.2.1 The mount structure
	2.2.2 VFS operations
	2.2.3 The VFS operations structure

	2.3 File systems overview
	2.3.1 Ondisk file systems
	2.3.2 Network file systems
	2.3.3 Synthetic file systems
	2.3.4 Layered file systems
	2.3.5 Helper file systems

	2.4 Initialization and cleanup
	2.5 Mounting and unmounting
	2.5.1 Mount call arguments
	2.5.2 The mount utility
	2.5.3 The fsmount operation
	2.5.3.1 Retrieving mount parameters
	2.5.3.2 Getting the arguments structure
	2.5.3.3 Updating mount parameters
	2.5.3.4 Setting up a new mount point

	2.5.4 The vfsunmount function

	2.6 File system statistics
	2.7 vnode management
	2.7.1 vnode's life cycle
	2.7.2 vnode tags
	2.7.3 Allocation of a vnode
	2.7.4 Deallocation of a vnode
	2.7.5 vnode's locking protocol

	2.8 The root vnode
	2.9 Path name resolution procedure
	2.9.1 Path name components
	2.9.2 The lookup algorithm
	2.9.3 Lookup hints

	2.10 File management
	2.10.1 Creation of regular files
	2.10.2 Creation of hard links
	2.10.3 Removal of a file
	2.10.4 Rename of a file
	2.10.5 Reading and writing
	2.10.5.1 uio objects
	2.10.5.2 Getting and putting pages
	2.10.5.3 Memorymapping a file
	2.10.5.4 The read and write operations
	2.10.5.5 Reading and writing pages

	2.10.6 Attributes management
	2.10.6.1 Getting file attributes
	2.10.6.2 Setting file attributes

	2.10.7 Time management
	2.10.8 Access control

	2.11 Symbolic link management
	2.11.1 Creation of symbolic links
	2.11.2 Read of symbolic link's contents

	2.12 Directory management
	2.12.1 Creation of directories
	2.12.2 Removal of directories
	2.12.3 Reading directories

	2.13 Special nodes
	2.14 NFS support
	2.15 Step by step file system writing

	Chapter 3
	Regression testing
	3.1 Testing file systems

	Appendix A.
	Acknowledgements
	A.1 Authors
	A.2 License

	Appendix B.
	Bibliography
	Bibliography

